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The size and volumes of genomic data resulting from the various genome projects are 

extremely huge and continuously increasing in very high rates.  Finding gene groups with 

similar functions is one of the most important tasks in bioinformatics. More specifically, 

computing the similarities between genes as numeric figures will have many benefits and 

applications in biomedical domain.  We present novel techniques for measuring the 

functional similarity of genes using Gene Ontology (GO) annotations.  GO is considered 

the most comprehensive resource of functional information on genes and gene products.  

The proposed methods are considered ontology-structure-based methods and rely strictly 

on ontology-structure features like depth and path length (PL) between GO nodes. We 

evaluated the proposed measures based on the correlation with gene sequence similarity 
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using Blast e-values.  We conducted experiments with several genome annotation 

databases. The experimental results proved that the proposed similarity methods are fairly 

efficient in estimating the functional similarity between genes, gene products, and 

protein.  Hence, ontology structure features can be used as good tools for determining the 

genes with similar functions within a genome. 
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1. INTRODUCTION 

Computing the functional similarity between genes and proteins is an important and 

necessary task in the bioinformatics and biomedical fields.  By comparing similarities 

between genes and proteins with known functions to those with unknown functions, the 

functions of the unknown genes and proteins can be determined to certain accuracy [54].  

Also it is useful to measure the differences between genes and proteins in different 

organisms. As an example, one can compare the proteins in yeast with the proteins in 

human and find those proteins in yeast that have the least biological and functional 

similarities with those in human. This is an approach for finding drugs and drug targets 

for human [54]. Thus, those proteins with biological processes or molecular functions, 

that are absent in human proteins, are considered as potential drug targets in biomedical 

domain [54]. 

In general, genes and gene products are functionally similar if they have comparable 

molecular functions and are involved in similar biological processes [54]. These gene 

products are not necessarily evolved from a common ancestor, and therefore, do not 

necessarily show sequence similarity.  In this research we explore a number of techniques 

for measuring the similarity between terms in Gene Ontology (GO).  Gene ontology [9] is 
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a comprehensive and controlled ontology to describe the functional and biological 

features of genes independent of the organism. We also propose new measures of 

functional similarity between genes using GO. The proposed measures have been 

implemented and evaluated with a large number of experiments using multiple sets of 

annotation databases. We have evaluated our data using three datasets that are:  

o Dataset from  SGD (Saccharomyces Genome Database) 

o Dataset from FlyBase (Database for Fruit Fly) 

o Dataset of gene pairs from Human and Yeast 

Fruit Fly and Saccharomyces are considered as model organisms. A model organism is a 

species that is appropriate to understand particular biological events in more complicated 

organisms, by providing the insight for workings of them [21]. For example, they are 

widely used to explore potential causes and treatments for human disease when 

experimentation on humans would be unfeasible or unethical [21]. Some of the model 

organisms are used for human like mice and fruit fly and some are used for studying plant 

sciences like Arabidopsis thaliana [21]. 

 

 

1.1. Gene Similarity  

Finding the similarity between genes and proteins can be done by several computational 

methods and from different data sources. For example, gene expression data, statistical 

computation on biological literature, sequential similarity, and semantic similarity are 

different information sources for measuring the similarity between genes and proteins 

[10, 32, 51, 54, 66, 69, 70].   For example, in [4], Al-Mubaid and Nguyen investigated the 
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effectiveness of using Medline corpus as the information source for measuring the 

semantic similarity in the biomedical domain [4]. In this thesis we focus on (1) the 

semantic similarity and (2) the sequence similarity between genes. In general, we 

compute the similarity between genes based on the similarity of their GO annotation 

terms.  The general problem of measuring gene functional similarity using GO 

annotations with semantic similarity measures can be defined as follows:  Define a 

genome annotation set (e.g. SGD, FlyBase) to be a set of genes of one species/organism 

with GO functional annotations for each gene in the set.  That is, every gene in the set is 

associated with one or more GO terms.  

Let G = {G1, G2,…., Gn} be the set of all genome annotations {in BLAST, UniProt, 

geneontology,..etc.}. 

Our goal is to define a general semantic similarity function S(g1 , g2, G) such that if g1 is 

(per blast-sequence-similarity, for example) closer to g2 than to g’2 then S(g1 ,g2) > S(g1 , 

g’2). Since such a similarity function is defined on all genes having GO annotations, it 

provides us a unified semantic similarity measure between genes regardless of the 

organism. 

 

 

1.1.1. Sequence Similarity 

DNA and proteins sequences can be considered as identifiers for genes and proteins. To 

look at them from the computer science side, they are sequences of alphabets that may 

have similarities in regions. They can be compared globally means all the sequence is 
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considered for similarity score or locally means that only specific regions of them are 

compared to each other. We call the first one global alignment and the latter local 

alignment. Here is a sample of aligning the two sequences. 

 

 

Figure 1.1. Sequence Alignment 

 

They are some score functions that give positive score to the letters that match and 

negative scores to those who do not. For example one function score may give the 

sequence score of +1 to the matched letters and -1 to mismatched ones. And -2 could be 

given to the gaps (indels) which are inserted to the sequence for maximizing the 

alignment score [68].  They are different methods of calculating the similarity score for 

two or more sequences. One of them is BLAST [5]. The BLAST algorithm has the best 

method that keeps a balance between speed of calculation and sensitiveness in sequence 

relationships [68].  Instead of relying on global alignments that is commonly used in 

multiple sequence alignment programs, BLAST emphasizes regions of local alignment to 

detect relationships among sequences that have regions of similarity (Altschul et al., 

1990). The input of BLAST tool is FASTA format of the sequences of the genes or 

proteins.   FASTA format is a text-based format for representing either nucleic acid 

sequences or protein sequences, in which base pairs or protein residues are represented 

using single-letter codes.  
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Since most of the bioinformatics data is in the form of sequences, the most accurate way 

of comparing the genes and proteins is by sequence similarities. The homologous 

relationship between proteins could be found by sequence comparisons, but not all of the 

similarities are based on homologies [54]. Based on sequence comparison, proteins of 

unknown function are assigned to characterized protein families, generating testable 

hypotheses of their molecular function. However, this established annotation approach 

has several limitations such as; up to 30% of the function annotations made through 

sequence similarity searches might be erroneous [16] [17]. The reason is when the genes 

are not evolving from a common ancestor the sequence similarity between them are not 

considerable. However they may have the similar functionality which is not reflected by 

sequence similarity tools [54]. 

The other problem is that there is no simple relationship between sequence similarity and 

function, but some general trends have been observed [54]. One other drawback for the 

sequence notation is that, it is not readable and understandable by human. Semantic 

measures on the other hand uses the resource data in scientific natural language as text 

which is human readable and understandable [4, 32].  

 

 

1.1.2. Semantic similarity 

One of the common ways of finding the similarities among genes is by computing the 

semantic similarities between GO functional annotations of the genes  [26, 31, 32,  47, 51, 

54, 61]. The resource data used in these kinds of measures are in scientific natural 
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language format which makes it human readable and understandable. The problem with it 

is they are not easy to interpret computationally [32]. These approaches use ontology 

(e.g. Gene Ontology) as the primary information source, and can be divided into two 

categories: Ontology-Structured-Based and Information-Based measures. 

 

Ontology-Structure-Based Measures 

The ontology-structured based measures use the ontology structure features such as path 

length between nodes (in the ontology), depth of nodes in the ontology tree, and the 

number of minimum paths between nodes, for computing the semantic similarity between 

two terms in a given ontology. For example, the shortest path length between two terms 

(two nodes) in a given ontology can be considered as a good indicator (or metric) of the 

(relative) similarity between these two terms. Suppose that PL(t1, t2) is the shortest path 

length between the two terms t1 and t2 in a given ontology Ox then PL(t1, t2) > PL(t3, t4) 

implies that the terms (t1, t2) have more similarity that the pair (t3, t4) according to 

ontology  Ox. In this thesis we have investigated the semantic similarity that is based on 

the structure of the Gene Ontology.  

 

Information-Content Based Measures 

The information-content-based measures use the information content (IC) of gene terms 

in computing the semantic similarity. Information Content can be defined as the 
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frequency of use of a term that can be computed from text corpora or estimated from the 

ontology (i.e. Gene Ontology) [48]. 

As an example here we compare the two information based measures Resnik [48] and Lin 

[30] for 30 random gene pairs selected from SGD [53]. 

In Resnik measure [48] the similarity between the two terms is calculated by the 

information content (frequency of use) of the common ancestors. Thus, the semantic 

similarity between two terms in an ontology is:  

 

)c ,S(cc,P(c) log-  )c ,(csim 2121Resnik ∈=  

 

S(c1, c2) is the set of common ancestors of terms c1 and c2.  

Lin [30] defines the similarity between two terms as the ratio of the LCA occurrence 

probability of two terms to the information needed to fully describe the two terms 

individually. The following equation reflects this idea. 

 

)c ,S(cc    ,)
)(log)c(log

)(log.2
(max   )c ,(c sim 21

21

21Lin ∈
+

=
cPP

cP
 

 

S(c1, c2) again is the set of common ancestors of terms c1 and c2.  

 

Gene1 Gene2 E-Value Bit Score Resnik Lin 

AAC1 AAC1 4.6e-145 1412 3.9049 1 

AAC1 PET9 1.7e-115 1133 3.9049 1 

AAC1 AAC3 3.7e-111 1092   3.9049 1 

AAC1 YPR011C 3.1e-20 234 1.2790 0.3958 

AAC1 LEU5 1.1e-14 171   1.2790 0.4096 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=4932
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AAC1 OAC1 9.9e-13 181   2.1438 0.4897 

AAC1 YEA6 3.70E-11 169 1.2790 0.4934 

AAC1 CTP1 5.30E-09 150 2.1438 0.7668 

AAC1 ODC1 1.80E-07 100 1.2790 0.7073 

AAC1 AGC1 2.40E-07P 100 1.2790 0.5101 

Table 1.1. Compare Sequential and Semantic Measures in High Sequentially Related 

Genes 

 

Gene1 Gene2 GO Gene2 
Occurrence(out of 

184810) 
LCA GO 

LCA 

Occurrence 

AAC1 AAC1 GO:0005471 23 GO:0005471 23 

AAC1 PET9 GO:0005471 23 GO:0005471 23 

AAC1 AAC3 GO:0005471 23 GO:0005471 23 

AAC1 YPR011C GO:0005215 9721 GO:0005215 9721 

AAC1 LEU5 GO:0015228 2 GO:0005215 9721 

AAC1 
OAC1 

GO:0008271, 

GO:0000227 

21,2 GO:0015291 1327 

AAC1 YEA6 GO:0051724, 

GO:0005215 

3,9721 GO:0005215 9721 

AAC1 CTP1 GO:0005371 9 GO:0015291 1327 

AAC1 ODC1 GO:0005342, 

GO:0005478 

850,224 GO:0005215 9721 

AAC1 AGC1 GO:0015183,  

GO:0005313 

9,34 GO:0005215 9721 

Table 1.2. LCA  for genes with multiple annotated GO terms 

 

As you see in the Table 1.2 some genes are related to more than one GO terms. Lins and 

Resnik both suggest picking up the one with the maximum occurrence of Least Common 

Ancestors. These terms are marked as bold in the table. Here the scores calculated from 

Resnik and Lins which are semantic similarity measures are compared to the sequential 

scores called Bit Score and E-value. Bit Score is the score that two sequences of genes 

obtain for their structural similarities and the E-Value represents the error or the 

differences between the genes 
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In the following table the Resnik and Lins measures are calculated for those genes that 

have no sequential similarities with the selected gene (AAC1). These genes are selected 

from the genes that were not appearing among those that have sequential similarity with 

the selected gene. 

Gene1 Gene2 Resnik Lins 

AAC1 15S_RRNA 0.1293 0.0816 

AAC1 AAD10 0.1293 0.0476 

AAC1 YPL206C 0.1293 0.0526 

AAC1 YPL278C 0.1293 0.3642 

AAC1 RIO1 0.1293 0.0860 

AAC1 RIX1 0.1293 0.3642 

AAC1 SCS7 0.1293 0.0442 

AAC1 SSO1 1.2790 0.4934 

AAC1 YPR158W 0.1293 0.3642 

AAC1 tC(GCA)P1 0.1293 0.0668 

Table 1.3. Semantic Measures in Low Sequentially Related Genes 

 

1.2. How this thesis is organized 

This chapter provides an introduction and overview to the task of similarity between 

genes and proteins using gene sequence data or gene annotation data from GO. Chapter 2 

gives a review of the background about the gene ontology and the tools related to than in 

addition to the related work and the existing measures of gene similarity.  In chapter 3, 

we propose novel measure called PL for measuring the functional similarity between 

genes using the GO annotations. One of the methods is based on calculating the simple 

path length (PL) between GO annotation terms of the genes. We evaluated our method 

with a series of experiments based on the correlation between our method and gene 

sequence similarity using Blast e-values. The experimental results proved that our 
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approach has fairly impressive agreement with Blast sequence similarity.  Furthermore, 

the evaluations showed that PL can be used as a tool for determining the genes with 

similar functions within a genome. We used in the evaluation three genome annotation 

datasets: SGD [53], FlyBase [67] and a Human-Yeast dataset of proteins[54].  Each 

dataset is divided into a number of sequence similarity ranges based on the E-value in 

gene pairs. Then, we grouped the genes into genes with high sequence similarity (HSS), 

low sequence similarity (LSS) and no sequence similarity (NSS) and each one of these 

three groups was tested separately. 

In chapter 4 we have proposed another method of measuring the semantic similarity of 

GO terms based on path length and the number of minimum paths between GO terms in 

the GO graph.  This method distinguishes between two types of paths and assigns 

different weights to determine the contributions of number of paths in the semantic 

similarity between the GO terms. To assess the similarity between two GO terms, our 

method considers all the possible paths between the two terms rather than considering 

only the distance to their least common ancestor LCA or the IC of their LCA [48], [23], 

[30], [61] . In the evaluation, we measured the semantic similarity of SGD 

(Saccharomyces Genome Database) genes from various SDG pathways (obtained from 

http://www.yeastgenome.org) and compared our results with two of the leading measures 

(Resnik [48]and Wang et al. [61]).  In chapter 5 we extend our PL measure and came up 

to a new measure called SimPLD that uses the depth of least common ancestor of two gene 

series of related term and the path length between them[25]. We used the average of all 

SimPLD for the terms annotated for each gene. The method is evaluated by a series of 
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experiments based on the correlation between SimPLD and gene sequence similarity using 

Blast e-values. 
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2. BACKGROUND AND RELATED WORK 

This chapter gives an introduction on the gene ontology which is one of the most 

comprehensive projects done in bioinformatics. It will also discuss about the tools and 

browsers available to search and navigate the terms in the gene ontology. Then the 

similarity measures that are proposed in different domains will be explained. 

  

2.1. Gene Ontology 

The Gene Ontology, created in 2000 by Gene Ontology (GO) Consortium [9], is an 

ontology which shows the functional and biological terms (annotation terms) related to 

genes and proteins in a hierarchical and structured way. Gene Ontology consists of a set 

of controlled vocabularies to describe the biology of genes in any organism [9]. GO 

annotations capture the available functional information of a gene or protein and can be 

used as a basis for defining a measure of functional similarity between genes. Besides the 

bioinformatics resources that hold data in the form of sequences, these data has 

represented as scientific natural language which is easier to be modeled and is more 

readable to human [32]. Gene Ontology has provided more accessible representation of 

the data related to the genes [47]. It is a dynamic evolving project of the Gene Ontology 

(GO) Consortium in which different sections of the ontology are expanded or reorganized 
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as more biological information becomes available. Therefore, GO project is a 

collaborative effort to address the need for consistent descriptions of genes in different 

databases. The project is collaboration between 35 model organism databases. Among 

them FlyBase (Drosophila Melanogaster), the Saccharomyces Genome Database (SGD) 

and the Mouse Genome Database (MGD), were the first groups of databases started the 

collaboration and after that other databases have joined them [9]. The ontology is 

represented as a network, directed acyclic graph (DAG), in which terms may have 

multiple parents and multiple relationships to their parents. In addition, each term inherits 

all the relationships of its parent(s).  GO consists of three ontologies that describe the 

molecular function of a gene, the biological process in which the gene participates, and 

the cellular component where the gene can be found; see Figure 1.  Figure 1 shows an 

excerpt of the gene ontology as it appears in the Amigo browser [7]. Each one of these 

three ontologies (molecular function, biological process, and cellular component) can be 

viewed as a root node and has children For example, as shown in Figure 1, the node 

“molecular function” with the GO id number of GO:0003674 and has the following 

children: “GO:0016209 : antioxidant activity”, “GO:0015457 : auxiliary transport 

protein activity”, ”GO:0005488 : binding”, “GO:0003824 : catalytic activity”, 

“GO:0060089 : molecular transducer activity”, “GO:0004871 : signal transducer 

activity”. The “signal transducer activity” is also the parent of “GO:0004872 : receptor 

activity” and other children.  If we continue to see the next children we see 

“GO:0008188 : neuropeptide receptor activity” which is the child of “GO:0030594 : 

neurotransmitter receptor activity”. This term is the last node so-called a leaf and there is 

http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0003674&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0016209&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0015457&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0015457&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0005488&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0003824&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0060089&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0004871&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0004871&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0004872&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0004872&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0008188&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0030594&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0030594&session_id=7070b1191022454&show_associations=list
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no other term that can be categorized under this term. It has the smallest association value 

(the value inside the bracket) in compare with its parents and ancestors. 

 

 

Figure 2.1. Overview of Gene Ontology 

 

Each node is specified by a GO id number which is a unique identifier for the GO terms 

in the gene ontology, a name, and the number of genes associations (i.e. the number of 

genes that are annotated with this term in gene ontology) shown inside the brackets. The 

more specific term, the smaller number of gene is associated with it. Therefore a big 

number of associations mean that the term is a general term. Each node’s association 
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number is the summation of the association number of its children plus the association 

number of itself.  For example  in Figure 2.2 we have “GO:0000146 microfilament motor 

activity” (association number of 63) with two children of “GO:0060001: minus-end 

directed microfilament motor activity”(association number of 2)  and “GO:0060002 

plus-end directed microfilament motor activity” (association number of 2) . The small 

value of the children shows the specificity of the two terms. Whereas the term 

“GO:0000146 microfilament motor activity” have larger number than its children which 

is compatible with “true path rule” that states that if a term describes a gene then all its 

parents must also apply to that gene [9]). 

 

 

Figure 2.2. True path rule: The two children are more specified and have smaller 

association value than their parent 

 

In GO, the terms are linked by two kinds of relationships that are is_a and part_of. The 

is_a relationship has the meaning of being a subclass. The part_of relationship means that 

if A is part_of B then whenever B exists A exists as a part of B. But A does not depend 

on B. Figure 3 shows some GO terms with is-a relationships between them in Gene 

Ontology. 

http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0000146&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0000146&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0060001&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0060001&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0060002&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0060002&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=assoc&search_constraint=terms&depth=0&query=GO:0060002&session_id=7070b1191022454&show_associations=list
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0000146&session_id=7070b1191022454&show_associations=list
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Figure 2.3. A tree view of some GO terms with is_a relationships between them (Picture 

is from Amigo browser [7]) 

 

2.2. GO Tools and Browsers 

There are several software tools to navigate and browse through the Gene Ontology to 

shows the position of the terms within the GO hierarchy.  In this section we take a look 

and review some of these tools. 
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o GOLEM [50] is an interactive graphic visualization tool for gene ontology that 

can be used for navigation and analysis of GO on the web. Users can also load 

annotation for various organisms to search particular genes. GOLEM is 

implemented in Java and both applet and web version of it is available. Figure 4 

shows how this software looks like. 

 

 

Figure 2.4. Each node in GO could have more than one parent. The picture is from 

GOLEM software [50] 

 

o Amigo is a browser for gene ontology data that is used for browsing and 

searching the gene ontology [7]. Users can search for genes to see the terms 

associated with them. They can see a terms’ position in the GO by using the 

Amigo interface. Amigo can be used to view all the genes associated with a GO 

term. The new added feature is BLAST search, which is useful to find the genes 
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that have the highest sequence similarity with the specified gene. Amigo uses the 

mySQL database. Figure 2.5 shows the genes associated with the term 

GO:0008188 in Amigo browser. By pushing the BLAST button we can have the 

FASTA format of the genes in addition to the genes that are sequentially similar 

to that gene based on their p-value. 

 

 

Figure 2.5.  Genes associated with term GO:0008188 in Amigo Browser 

 

Here is an example of FASTA format for gene TVFV2E. It starts with a single line 

description and the lines of sequence data comes after that. The “>” symbol at the 

beginning of the line distinguishes the description from the sequence data. See below: 

 

>gi|532319|pir|TVFV2E|TVFV2E envelope protein 

ELRLRYCAPAGFALLKCNDADYDGFKTNCSNVSVVHCTNLMNTTVTTGLLLNGSYSENRT 

QIWQKHRTSNDSALILLNKHYNLTVTCKRPGNKTVLPVTIMAGLVFHSQKYNLRLRQAWC 

HFPSNWKGAWKEVKEEIVNLPKERYRGTNDPKRIFFQRQWGDPETANLWFNCHGEFFYCK 

MDWFLNYLNNLTVDADHNECKNTSGTKSGNKRAPGPCVQRTYVACHIRSVIIWLETISKK 

TYAPPREGHLECTSTVTGMTVELNYIPKNRTNVTLSPQIESIWAAELDRYKLVEITPIGF 

APTEVRRYTGGHERQKRVPFVXXXXXXXXXXXXXXXXXXXXXXVQSQHLLAGILQQQKNL 
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LAAVEAQQQMLKLTIWGVK 

 

There are lots of other navigation and analysis tools available on gene ontology website 

geneontology.org. The mentioned software tools are the ones used in this thesis.  

 

Figure 2.6. Sample of Amigo Browser output 

 

 

2.3. Distance between terms in GO 

In Gene Ontology finding the number of the edges between two terms has not been 

automated by any software. In this thesis we have implemented a program that can 

quantify the distance between the terms, using the XML format of the Gene Ontology. 

The XML file is freely available and downloadable from www.geneontology.org.  
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Figure 2.7. XML format of Gene Ontology 

 

In this thesis we have calculated the distances between genes and proteins from different 

genomes [26]. The terms associated with each gene and protein is extracted from a 

database related to that genome. The process of assigning GO terms to genes is called 

annotation. The database provides us with terms that the genes are annotated with and the 

references that associated the terms to the genes. It also indicates the kind of evidence 

code available to support the annotation. For every evidence code, a curator judges about 

the quality of the evidence. Therefore the terms that have the evidence code of TAS 

(Traceable Author Statement) is completely different in terms of quality from those that 

have the evidence code of NR (Not Recorded). Some of other evidence codes are NAS: 

Non-traceable Author Statement, ISS: Inferred from Sequence or Structural Similarity, 
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IEA: Inferred from Electronic Annotation. More detail about the evidence code can be 

found in geneontology.org.  

Each of these databases has downloadable files that contain all these associations. Some 

of the genomes that have their annotations available are: 

o SGD: This is a scientific database related to the genes of the yeast Saccharomyces 

cerevisiae, which is commonly known as baker's or budding yeast. It contains 

6476 annotated genes in gene ontology [53]. 

o FlyBase: This database contains the molecular biology and genetics of the Fruit 

Fly (Drosophila melanogaster) that is used as a research tool and model organism. 

It contains 10581 annotated genes [67]. 

o WormBase: This is a database of the model organism Caenorhabditis Elegans. It 

contains 14156 annotated genes in gene ontology[63] 

o Arabidopsis thaliana TAIR/TIGR: This database contains the genes from genome 

Arabidopsis thaliana which is a model organism for plants [8]. It contains   34683 

annotated genes in gene ontology [8]. 

o Trypanosoma brucei Sanger GeneDB: Contains the genetics and molecular 

biology related to Trypanosoma brucei which causes the African trypanosomiasis 

(or sleeping sickness) disease. There are more than 60 million people at risk in 

Africa.[62] It contains  3921 annotated genes in gene ontology [59]. 

o MGI: Mouse Genome Informatics provides integrated access to data on the 

genetics, genomics, and biology of the laboratory mouse [39]. It contains 18052 

annotated genes in gene ontology [39].  

 



22  

2.4. Similarity Measures 

Ontology-based semantic similarity measures have been investigated for long time in 

different domains. First it was proposed in English domain and later it was adapted in 

biomedical and bioinformatics domains. The first Ontology used for measuring the 

semantic similarities between its terms was WordNet [12, 37, 40]. Several measures were 

proposed, some were based on the structure of the ontology [32] and some were related to 

information content of the terms [12, 23, 30, 40, 48]. 

 

§ Resnik Measure 

Resnik [48] proposed an information-content (IC) based measure for semantic similarity 

between terms and these measures were designed mainly for WordNet [12, 37].  

WordNet is a freely available lexical database that represents an ontology of 

approximately 100,000 general English concepts [12, 37]. These measures are proven to 

be useful in natural language processing (NLP) tasks [44].  Resnik’s measure calculates 

the semantic similarity between two terms [t1, t2] in Ontology (e.g., WordNet) as the 

information content (IC) of the least common ancestor (LCA) of t1, t2.  The IC of a term t 

can be quantified in terms of the likelihood (probability) of its occurrence p(t).  

 

IC(c)  -log p(c)=  (1 ) 

 

The higher a term appears in the ontology means the lower is its information content 

because, simply, more general terms tend to occur more frequently in general than 

specialized terms. For example in Figure 2.8 the information content of node 1 is less 
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than all of its descendants and the leaves (nodes 10, ..15) have the most information 

content and are the most specialized terms. The probability of a term to occur is assumed 

to be equal to its frequency in the annotations in a database  [32]  [51].  In Gene Ontology 

the frequency of each term c is calculated by: 
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where anno(c) is the number of genes annotated with this term in the database, 

children(c) is the set of children for term c in GO [54]. It means that the frequency of 

each term equals to the number of the time that genes are annotated by this term plus the 

number of the times that its children are used to annotate a gene.  

The probability of term t is then defined as: 

 

 freq(root)freq(t) p(t) =  (3 ) 

 

where freq(root) is the frequency of the root term [Schlicker 2005]. 

 The probability assigned to a term is defined as its relative frequency of occurrence. 
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The minimum similarity is zero and there is no maximum for this measure. 

 

 

Figure 2.8. Example of a tree structure 

 

The more frequency of occurrence means the more general term. The power of Resnik's 

measure is that both the relevance of the LCA itself and the distance to the LCA are taken 

into consideration [61]. Resnik’s method only concentrates on the information content of 

a term derived from the corpus statistics and it ignores the structure of the ontology 

which is considered as a drawback of using his method in Gene Ontology in which the 

specificity of a GO term is usually determined by its location in GO-graph and the 

biological meaning of a term is inherited from all of the term’s ancestors [61]. For this 

reason Wang et. al pointed out the information content is not an appropriate measure for 

the measuring the semantic similarity of the GO terms [61]. 

 

§ Jiang and Conrath 
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Jiang and Conrath [23] proposed a different approach for the WordNet ontology by 

combining the edge based measure with information content calculation of node based 

techniques derived from Resnik’s method. Their formula measures the distance between 

two terms. The distance is the reverse of their similarity measure.   
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§ Lin’s  Measure 

Lin [30] in 1998 developed a measure that considered how close the terms are to their 

least common ancestor (LCA) in the ontology. However, it disregards the level of detail 

of the lowest common ancestor. 
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Here S(c1, c2) is the set of common ancestors of terms c1 and c2. In contrast to Resnik's 

similarity, the values range between 0 and 1. 

 

§ Other Measures 

In 1994 Wu and Palmer [64] applied both the distance between each term with the LCA 

of two terms and the depth of LCA of them. Later in 1998 Leacock and Chodorow [29] 

proposed a formula for computing the semantic similarity or the relatedness between two 

terms in WordNet ontology as follows: 
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in which Len is the minimum path between t1 and t2.  

 

Biomedical Domain 

In the Biomedical domain, measures of semantic similarity based on ontology were 

developed as early as 1989.  Rada et al. [46] proposed the first semantic similarity 

measure in the biomedical domain by using path length between biomedical terms in the 

MeSH ontology [36] as a measure of semantic similarity. Al-Mubaid et al. (2007) [1] 

presented a technique for computing the semantic distance (similarity) between 

biomedical terms across multiple ontologies within a unified framework like UMLS. 

Also, Nguyen and Al-Mubaid (2006) [42] proposed a similarity measure for biomedical 

terms by combining both path length and depth features from biomedical ontologies. 

 In fact the path length is the distance between the terms in the ontology based on the 

edges needed to be traversed to reach to the other term. Path Length (PL) can be 

calculated easily for a tree structured Ontology such as WordNet. But for DAG-type 

ontology, like Gene Ontology, path length is more complicated, since each node may 

have multiple parents, and thus, two nodes can have several different paths between 

them.  Several other biomedical ontologies, within the framework of UMLS (unified 

medical language system) [60], have also been used for measuring semantic similarity in 

bioinformatics [1, 2, 4, 41], e.g. Snomed-ct [28, 40] and ICD9CM [58]. 
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Lord et al. (2003) [32] were the first to apply a measure of semantic similarity to GO. 

They proposed a technique for calculating the semantic similarity of protein pairs based 

on Resnik's measure [48]. The semantic similarity between two proteins is defined as the 

average similarity of all GO terms with which these proteins are annotated. Each protein 

pair receives three similarity values, one for each Ontology (Molecular Function, 

Biological Process and Cellular Component Ontologies) [32].   

Speer et al. (2004) [56] used a distance measure based on Lin's similarity for clustering 

genes on a microarray according to their function.    Chang et al. (2001) [14] and 

MacCallum et al. (2000) [33] showed that Similarity between annotation and literature 

will augment sequence similarity searches [32]. They improved PSIBLAST (Altschul et 

al., 1997 [6]) with similarity scores calculated over the annotations and Medline [35] 

references. Sevilla et al. (2005) [51] analyzed the correlation between gene expression 

and Resnik's,   Jiang and Conraths’ and Lin's measures of semantic similarity [51]. They 

used microarray data analysis to determine expression levels of genes and compare them 

with those annotated in GO. They concluded that Resnik's measure correlates well with 

gene expression. On the other hand, Budanisky and Hirts [12] investigated the relatedness 

of Resnik [48], JC [23] and Lin’s [30] measures in WordNet ontology and founded JC 

[23] as a superior measure to all other ones. These measures were all applied to the non-

biomedical ontologies. 

More recently, Schlicker et al. (2006) [54] introduced a new measure of similarity 

between GO terms in Gene Ontology that is based on Lin's and Resnik's techniques. 

Their measure (simRel) takes into account how close terms are to their least common 
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ancestor as well as how detailed the LCA is, i.e., distinguishes between generic and 

specific terms.  
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S(c1, c2) is the set of common ancestors of terms c1 and c2.  

This simRel score is the basis for a new measure, called funSim, to compute the functional 

relationship between two gene products. The score ranges from 0 to 1. A funSim score 

close to one indicates high functional similarity whereas a score close to zero indicates 

low similarity. The distribution of the funSim score analyzed and compared for four 

different categories of protein pairs corresponding to four levels of evolutionary 

relationship: no sequence similarity (NSS), low sequence similarity (LSS), high sequence 

similarity (HSS), and orthology
1
 according to Inparanoid (IO) that have more sequences 

similarity than HSS. The result is that almost 60% of the protein pairs in the IO dataset 

have the score above 0.8. Those proteins with the highest sequence similarities tend to 

have similar molecular functions. However, some protein pairs in the IO set have scores 

below 0.2, indicating no functional similarity. The percentage of proteins with high 

functional similarity is highest for the IO category, and decreases for HSS and LSS, to 

almost no protein pairs without sequence similarity (NSS). These results confirm that 

functionally related proteins tend to have higher sequence similarity [54].  

xxviii                                                 

1
 Orthologs are genes in different species that originate from a single gene in the last common ancestor of 

these species. Such genes have often retained identical biological roles in the present-day organism [47]. 
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Wang et. al (2007) [61]   proposed a measure to calculate the functional similarity of GO 

terms based on GO term’s semantics (S value) which is an aggregate of the contributions 

of the term’s ancestors in the GO graph. In the evaluation, they found that their method 

produces results closer to human perception compared with the results of Resnik’s 

measure on the same genes [61].   

Although Path length measure has been applied and explored with several biomedical 

ontologies [46] [44], it has never been applied or investigated with the gene ontology.  

All gene functional similarity techniques that use GO are, thus far, based on IC of terms 

or node depth features [54] [23] [32] [46].  
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3. A PATH LENGTH METHOD FOR GENE SIMILARITY 

USING GO ANNOTATIONS 

This chapter presents the first gene similarity method which estimates the gene functional 

similarity based on the semantic similarity between the GO terms annotated for genes. As 

mentioned in chapter 2, Path length metric has been used in the biomedical domain as a 

good measure of term similarity [46] but has never been investigated in the context of 

gene functional similarity and gene ontology.  We use the ontology structure, of the GO, 

for estimating the similarity between pairs of genes based on their annotated terms. More 

specifically, we propose the path length between two terms in GO as an indicator of 

functional similarity/relatedness of the genes annotated with these terms. For example, 

suppose that two genes g1 and g2 are annotated with the GO terms t1 and t2, respectively, 

for their molecular functions MF. Then, the shortest path length between t1 and t2, PL(t1, 

t2),  in GO is a good measure of the functional similarity between g1 and g2. In this 

chapter the proposed measure is evaluated by comparing it with the sequence similarity 

measure.  
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3.1. Path Length Calculation 

We developed an application for calculating the shortest path length between two genes 

(gene pair) based on their annotated terms. The method selects the gene pairs from an 

organism annotation file (e.g. SGD), then extracts the terms that these genes are 

annotated with. 

These annotation terms can be from each of biological process BP, molecular function 

MF, and cellular component CC ontologies. Recall that the GO is organized into these 

three ontologies BP, MF, and CC.  For a given pair of genes (g1 and g2), in certain 

annotation database like SGD, the annotation terms for g1 and g2 in molecular functions 

will be extracted and stored in a link list. Then we calculate the first common ancestor of 

the terms related to the two genes. We used the February 2007 release of GO from the 

gene ontology website [22]. The yeast gene annotations were downloaded from the SGD 

site (Dec.2006) [53], FlyBase gene annotations were obtained from the GO website 

(Dec.2006) [22].  Here is simplified algorithm for the process: 

1. For each pair of genes {g1, g2} in the annotation file, the terms related to each 

gene are extracted from the database. 

2. The path lengths between the GO terms are calculated from the GO DAG using 

edge counting. 

3. The distance score between two genes is measured based on the average distance 

(shortest path length) between their GO annotation terms. 

There were two ways for implementing our algorithm for computing the shortest path 

length between two GO nodes n1 and n2:  
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1. Recording all the ancestors of each node (each node represents a GO term) till we 

reach the root.  Then we compare the ancestors of n1 and n2 to find the common 

ancestors. 

2. Recording just the first level ancestors of each node and comparing them to see if 

they have anything in common or not.  

Since the second approach uses less memory and faster compared to the first approach we 

have applied it in our method. In next section the detail of the method is explained. 

 

 

3.2.  Algorithm for Distance Measure  

To measure the distance between the genes we need to have distance (path length) 

between the terms related to each gene. In section 3.2.1 we explain how the distance 

between two terms is measured and in section 3.2.2 the distance between two genes are 

computed. 

 

 

3.2.1. Distance between GO terms 

To calculate the distances between each 2 terms in the gene ontology we have developed 

an application in .Net framework using C# language. The algorithm that is used in this 

program is as follows: 

1. The LCA (least common ancestor) between two nodes is calculated first: 
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a. The first level ancestors of each node are extracted from the gene ontology 

DAG. 

b. The ancestors are then compared to each other to see if they have come up 

to a common ancestor or not. 

c. When the ancestors of the two target nodes had any node in common it 

means that the common ancestor is found. 

2. To measure the distance between two nodes we count the edges from each node to 

the common ancestor found in previous stage.  

 

 

Figure 3.1. GO is a kind of DAG. 

 

As an example we explain the algorithm of finding the fist common ancestor of node 11 

and node 12 in Figure 3.1. Some snapshot of the process is shown in figures3.2 and 3.3. 

We have used linked list as the structure of storing the nodes in it. We have a pointer that 

moves from the beginning to the end of the link list to show which node’s parent should 

be calculated. Here is the algorithm: 
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1- First the two nodes of 11 and 12 (the target nodes) are pushed as the first 2 

elements of the link list. The pointer is now on the node 11 in the link list. 

 

Figure 3.2. Stage 1 of the algorithm 

 

2- The first level ancestors of the node 11 (which has the pointer on it) will be added 

to the list(7, 4). The pointer moves one cell further to the node 12. 

 

Figure 3.3.  Stage 2 of the algorithm 

 

3- The first level ancestors of the node 12 which are (8 and 5) are be added to the 

list. Pointer will move further on to the node 7. 

 

Figure 3.4. Stage 3 of the algorithm 

 

4- The first level ancestor of node 7 is node 4 which had been added to the list 

before. Since there is no need to add the existing number to the list we just go to 

the next element. 
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Figure 3.5. Stage 4 of the algorithm 

 

5- Node 4 has the node 2 as its immediate ancestor. We add it to the list. The pointer 

moves on node 8. 

 

Figure 3.6. Stage 5 of the algorithm 

 

6- The first level ancestors of node 8 are nodes 5 and 6. The node 5 is already in the 

list so we just add 6 to the list. 

 

Figure 3.7. Stage 6 of the algorithm 

 

7- The first level ancestor of node 5 is node 2. That has been added to the link list in 

the stage 5 as the parent of node 4 and node 4 was the parent of node 11. On the 

other hand node 5 was the ancestor of node 12. So we have reached to node 2 

from two different target nodes (11 & 12) that make it the Least Common 

Ancestor of them. 
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Figure 3.8. Reach the fist common ancestor from two target nodes 

 

Note: In this algorithm we keep the track of each path to see which source the ancestors 

are relate to. If the program reaches a common ancestor from two different sources it 

means we have reached to the first common ancestor. 

 

 

Figure 3.9. Source node(target node) of each node in the link list 

 

Figure 3.10 shows a sample of the program run for genes AAD4 and NUP159 (from 

SGD). Moreover, more details about the implementation of the PL method are available 

in Appendix A. 
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Figure 3.10. The Path Length Calculator application snapshot 

 

 

3.2.2. Distance between genes 

To find the distance between two genes we first calculate the distance between the GO-

terms of each gene and then we derive a similarity score that is represents all of them.  

This score could be calculated by one the following ways: 

 

§ Row Maxima and Column Maxima 

This is the method that has been used by Schlicker et. al [54]. They defined their measure 

of similarity between the genes based on the similarity value between their related terms 

using the maximum values of all rows and columns in the similarity matrix. As an 

example suppose that the Table 3.1 is the similarity matrix for GO-terms related to two 

genes: 
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Table 3.1. The similarity matrix between two genes 

 

In this method, the maximum value in each row is extracted and the average of them 

forms the rowScore. Then the average of maximum value for each column is calculated 

that forms the columnScore. The final similarity measure is the maximum of the two 

values (rowScore and columnScore) [54] 

 

∑
= ≤≤

=
N

i Mj

dij
1 1

max
N

1
  rowScore  

(1) 

∑
= ≤≤

=
M

j Nj

dij
1 1

max
M

1
  ecolumnScor  

(2) 

Similarity_Score = maximum(columnScore, rowScore) (3) 

 

 

§ Average of all the GO-Distances 

For the pair of genes {g1, g2} such that g1 is annotated (for its MF) with the terms t1, .., tn 

while g2 is annotated with terms t1,..,tm.  We calculate all the possible short paths between 

the MF terms of g1 and g2.  Let dij be the shortest path length between term ti of g1 and 

term tj of g2. The method computes the average of all paths:  
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1..m}:j 1..n,:i| dij avg{  (4) 

 

For example, suppose that the 2 genes g1 and g2 are annotated with the following GO 

terms. g1 è t1, t2, t3, t4    and g2è t1’, t2’, t5’, t6’ where t1= t1’ and t2 = t2’.  Then their 

similarity matrix contains 16 values. To calculate the average we have:  

Average =  [d(t1, t1’) + d(t1, t2’) + d(t1, t5’) + d(t1, t6’) + 

        d(t2, t1’) + d(t2, t2’) + d(t2, t5’) + d(t2, t6’) + 

        d(t3, t1’) + d(t3, t2’) + d(t3, t5’) + d(t3, t6’) + 

                    d(t4, t1’) + d(t4, t2’) + d(t4, t5’) + d(t4, t6’)] /16 

 

where d(a, b) means the distance(or shortest path length between the 2 terms a and b).  

If we simply measure the distance between each two term as mentioned above we would 

encounter a problem which is shown by example below. 

Suppose that we have two genes that are annotated with exactly the same terms, that is g1 

è t1, t2   and g2 è t1’, t2’ where t1= t1’ and t2 = t2’.  The distance measure between the 

two genes would be d(t1, t1’) + d(t1, t2’) + d(t2, t1’) + d(t2, t2’) = [0+1+1+0]/4 = 0.5 

which is not the desired result we expect from this measure. We expected to see the 

minimum distance which is zero between these two genes. Therefore we change our 

approach a little bit so that the distance of those terms that are common in two terms is 

not counted.  Therefore in the above example that we had two genes of  g1 è t1, t2, t3, t4    

and  g2è t1’, t2’, t5’, t6’ where t1= t1’ and t2 = t2’ the average is calculated as follows: 

Average =  [0  + 0 + 0 + 0 + 

       0 + 0 + 0 + 0 + 
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        d(t3, t1’) + d(t3, t2’) + d(t3, t5’) + d(t3, t6’) + 

                    d(t4, t1’) + d(t4, t2’) + d(t4, t5’) + d(t4, t6’)] /16 

 

3.3. Comparing the results with Sequence Similarity 

We used Blast tool [11] for computing sequence similarity between gene pairs. The Basic 

Local Alignment Search Tool (BLAST) finds regions of local similarity between 

sequences. The program compares gene sequences to sequence databases and calculates 

the statistical significance of matches. [11]  

In some experiments, we used another tool, WU-BLAST2 [52], to find genes having high 

sequence similarity to a given gene.  We changed the settings in this program so that 

more genes with less sequence similarities are shown in the result. Lower EXPECT 

thresholds in Blast settings causes more stringent selection that lessen the chance of 

matching sequences [11]. 

 

3.3.1. E-value 

The Expect value (E-value) is a parameter that describes the number of hits one can 

"expect" to see just by chance when searching a database of a particular size [11].  In the 

gene sequence similarity results from Blast, the E-value of 0 means that the genes are 

totally similar, and as the E-value increases the sequence similarity decreases. This means 

that the lower the E-value, or the closer to 0 the more sequence similarity they have [11]. 

Bit-score is another metric of sequence similarity that BLAST gives and that indicates 

how much alignment and sequence similarity two genes have. 
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The higher the bit-score the better the alignment, and hence, higher sequence similarity. 

The path length between two genes is inversely proportional with the bit score. When the 

path length between two genes increases, their Blast bit score decreases; this relation is 

shown in Figure 3.11. In which all the genes in group1 have high sequential similarity, all 

the genes in group1 have medium sequential similarity with group2 and all the genes in 

group1 have no sequential similarity with group3. 

 

Gene1(group1) Gene2(group1) Path Distance  Score(bits) 

AAD10 AAD4 0 1379 

AAD10 AAD14 0 1362 

AAD10 AAD3 0 1177 

AAD10 AAD16 0 695 

AAD10 AAD15 0 531 

AAD10 AAD6 0 427 

AAD10 YPL088W 0 227 

Table 3.2. SGD genes with high sequence similarity with AAD10 

 

Gene1(group1) Gene2(group2) Path Distance Score(bits) 

AAD10 POP3 9 39 

AAD4 GRX4 5 0 

AAD14 RRN5 8 0 

AAD3 KAP95 8 0 

AAD10 HUA1 5 47 

AAD4 NUP159 6 - 

AAD14 BFA1 8 0 

AAD10         YMR041C 5 79 

AAD10 RPL29   7 44 

AAD10 ATP10 8 63 

Table 3.3. Comparing Group1 with Group2 genes 

 

Gene1(group1) Gene2(group2) Path Distance  Score(bits) 

AAD10 ABZ1 8 0 

AAD10 ACB1 9 0 

AAD10 ACT1 7 0 
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AAD10 ADE17 9 0 

AAD10 ADE8 10 0 

AAD10 ADY2 10 0 

AAD10 AGP1 9 0 

AAD10 AHP1 6 0 

Table 3.4. SGD genes with no similarities with AAD10 
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Figure 3.11. Relationship between path length and bit score 

 

As it shown in the diagram the path length have the opposite trend compare with the bit 

score. The bit score values are divided into 100 to be shown easier in the diagram. 

 

3.4. Experiments and Results 

We developed a module, called PathLengthCalculator, to implement our proposed 

method for measuring the similarity between GO terms and between genes. We used the 



43  

PathLengthCalculator module to evaluate our methodology and measure the distance 

between the genes and proteins.  

 

3.4.1. Distribution of Path Length  

 

§ Distribution of PL in SGD Dataset 

We have explored the distribution of path length between gene pairs in SGD genes.  

For that, 1000 gene pairs were selected randomly from SGD. The distribution of path 

length of these randomly selected gene pairs are shown in Figure 3.12.  From this 

experiment (Figure 3.12) we notice that the majority of these gene pairs (64%) have 

path length between 3 and 7. Furthermore, 12% of these pairs have path length of at 

most 2 which indicate that these genes have somewhat significant semantic similarity 

(small path length) between their GO terms. Moreover, we found that 24% of these 

gene pairs have path length of 8 or greater [8-13] which indicates that these pairs 

have no similarity in their GO annotation terms.  This leads to the observation that 

there is no significant pattern or relation (by chance) of the path length feature 

between these SGD genes. 
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Distribution of Path length among SGD Genes
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Figure 3.12. Distribution of path length among 1000 gene pairs randomly selected from 

SGD. 

 

§ Distribution of PL in FlyBase Dataset 

To see the distribution of path length in FlyBase we have collected randomly 500 

gene pairs from FlyBase annotation file. The path length distribution is illustrated in 

Figure 3.13. Again, no pattern or relation exists between FlyBase genes. 



45  

Distribution of path length among FlyBase 
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Figure 3.13. Distribution of path length among 500 gene pairs randomly selected from 

FlyBase 

 

3.4.2. Evaluation based on Correlation with Sequence Similarity 

In our experiments we have examined our method to test the correlation between path 

length and sequence similarity of gene pairs. For that, we extracted three datasets of gene 

pairs from SGD: HSS, LSS, NSS. The high sequence similarity (HSS) gene pairs are 

those with the Blast E-value ≤ 10
-5

. The gene pairs with low sequence similarity (LSS) 

are those with the E-value > 10
-5

 but less than one. The gene pairs with no sequence 

similarity (NSS) are those with the E-value = 1.  
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Table 3.5.  Example from SGD-LSS gene pairs 

 

Table 3.5 shows a small part of the result for the LSS dataset as an example. We have 

plotted the percentages of each group (HSS, LSS, NSS) that have PL value less than 2, 

the PL value of greater than 2 but less than 7 and the PL value of greater than 7 in the 

following.   

The PL measure is tested on the following datasets: 

o Dataset 1 contains 200 gene pairs of HSS, 200 gene pairs of LSS, and 200 gene 

pairs of NSS extracted from SGD annotation database [53].  
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Dataset1 From SGD
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Figure 3.14. Distribution of path length between gene pairs in Dataset 1 

 

Figure 3.14 illustrates the distribution of path length (x-axis) in HSS, LSS, and NSS 

sets.  More than 60% of the gene pairs in HSS have path length of 2 or less while only 

15% of LSS and 4% of NSS gene pairs have the path length 2 or less. The number of 

HSS gene pairs decreases as the path length increases through the x axis. We also 

found that more than 40% or NSS gene pairs and only less than 10% of HSS pairs 

have path length of 8 or more. 

o We conducted another experiment on SGD genes using another dataset (Dataset2) 

of gene pairs having certain relations in their sequence similarity.  Dataset 2 

includes 139 gene pairs of HSS, 469 gene pairs of LSS, and 386 gene pairs of 

NSS extracted from SGD annotation. The results are illustrated in Figure 3.15.  

As we can see in these experimental results, again there is a pattern or relation 

between path length and sequence similarity. That is, gene pairs with high 

sequence similarity (HSS) tend to have low path length between their GO terms. 
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DataSet2 From SGD
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Figure 3.15. Distribution of path length between gene pairs in Dataset 2 from SGD 

 

For example, more than 80% of HSS pairs have path length of 2 or less. Moreover, genes 

with no sequence similarity (NSS) lean to have relatively higher path length between 

their GO terms. 

o Next, we combined Dataset 1 and Dataset 2; we call it Dataset 3 which includes 

339 HSS gene pairs, 669 LSS gene pairs, and 586 NSS gene pairs. The results of 

Dataset 3 are shown in Figure 3.16. Again, we have the same trend, majority of 

NSS genes (93%) have path length of 3 or more which implies that there is no 

significant semantic similarity in their GO terms. On the other hand, majority of 

HSS genes (70%) have path length of 2 or less indicating semantic similarity in 

their GO annotation terms. 
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Dataset3 From SGD
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Figure 3.16. Distribution of path length between gene pairs in Dataset 3 

 

o In another evaluation, we used genes from a different genome, the FlyBase 

annotation database [67]) in a new dataset (we call it Dataset 4) of gene pairs. 

Dataset 4 includes 60 gene pairs of HSS, 60 gene pairs of NSS extracted from 

FlyBase annotation database. The results of path length distribution among the 

FlyBase gene pairs are illustrated in Figure 3.17.  Almost 80% of HSS pairs have 

path length ≤ 2 while only 13% of NSS pairs have path length ≤ 2 which implies 

that there is a correlation between sequence similarity and path length in this 

dataset.  
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Distribution of Path Length in FlyBase dataset
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Figure 3.17. Distribution of path length between gene pairs in Dataset 4 from FlyBase 

 

We include a listing of the gene pairs of each group (HSS, LSS, NSS) in each dataset in 

Appendix B.   

In summary, our evaluation experiments involved more than 1700 gene pairs (more than 

3400 genes) having high, low, or no sequence similarity from two different organisms. 

Furthermore, we tested our method on 1500 gene pairs (3000 genes) randomly selected 

(with no particular sequence similarity) from the two organisms.  All the experimental 

results on various gene groups, from two different genomes, support the fact that there is 

significant correlation between the sequence similarity of genes and semantic similarity 

using path length.  This suggests and proves that path length between gene annotation 

terms using GO can be a good and reliable measure and metric for gene functional 

similarity.   
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3.4.3. Compare Average and Maxima methods 

We introduced two methods for calculating the distance between two genes in section 

3.2.2: Row Maxima and Column Maxima and Average of all the GO-Distances. To 

compare between two methods, some experiments have been done. These experiments 

are applied on the dataset we explained in section 3.4. We call the first approach Maxima 

and the second approach PL in the figures: 
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Figure 3.18. Comparison between PL and Maxima measure in HSS FlyBase dataset 

 

As it is shown in the figure the maxima measure is doing very well in predicting the path 

length for the genes in FlyBase HSS. The results are even better in compare with PL 

measure. Near 50% of the gene pairs with high sequence similarity have the PL value of 

less than one. The PL is measured by considering the maximum of the rows and columns 

explained in section 3.2.2. Next we consider the diagram for FlyBase NSS. As it shown 
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below the two measures are similar to each others and both shows correlation with 

sequence similarity. 

 

PL vs. Maxima in FlyBase-NSS
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Figure 3.19. Comparison between PL and Maxima measure in NSS FlyBase dataset 

 

The 3 datasets of SGD is also used to compare the two approaches. As you see in figure 

below both of the measures have correlation with sequence similarity. With PL measure 

37 percent and with Maxima measure 42% of the gene pairs with high sequence 

similarity have the PL value less than 1. 
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PL vs. Maxima in SGD-HSS
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Figure 3.20. Comparison between PL and Maxima measure in HSS SGD dataset 

 

For LSS and NSS we also can see the difference between these two measures. As it is 

shown below most of the pairs have the PL value of 6 in both measures which is 

approximately a medium distance for the gene pairs. Since we consider the PL measure 

less than 2 as close distance and between 2 and 7 is considered as medium distance and 

the PL value of greater than 7 shows a far distance between the gene pairs. 
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Different PLs in SGD-LSS
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Figure 3.21. Comparison between PL and Maxima measure in LSS SGD dataset 

 

As it is shown below more than 50% of the gene pairs have the PL measure greater than 

7. Less than 5% have the PL value of less than 2 and the rest have the PL value between 

2 and 7. Still the correlation can be seen clearly for both measures. 
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 PL vs. Maxima in SGD-NSS
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Figure 3.22. Comparison between PL and Maxima measure in NSS SGD dataset 

 

We have also applied these two approaches to the datasets from [54]. This dataset is 

being further used in the rest of this thesis. It contains 4 groups of the protein pairs. Those 

with very high sequence similarity that is called IO dataset, those with high sequence 

similarity called HSS, those with low sequence similarity and no sequence similarity 

called LSS and NSS respectively. 
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PL vs. Maxima in Human-Yeast dataset-IO
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Figure 3.23. Comparison between PL and Maxima measure in IO Human-Yeast dataset 

 

The PL and Maxima measures both show the highest percentage of protein pairs in the 

PL value range of less than 1. In HSS, LSS and NSS dataset we also can see that the 

result is the same as what we expected. 
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PL vs. Maxima in Human-Yeast dataset-HSS
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Figure 3.24. Comparison between PL and Maxima measure in HSS Human-Yeast 

dataset 
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PL vs. Maxima in Human-Yeast dataset-LSS
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Figure 3.25. Comparison between PL and Maxima measure in LSS Human-Yeast dataset 
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PL vs. Maxima in Human-Yeast dataset-NSS
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Figure 3.26.  Comparison between PL and Maxima measure in NSS Human-Yeast 

dataset 

 

3.4.4. Compare terms in Biological Process and Molecular Function ontologies 

We have done some experiments to compare the Biological Process (BP) distance versus 

the Molecular Function (MF) distance in the gene ontology. We have used 2 data sets for 

our comparison. First we applied it to 2000 genes from FlyBase dataset. 

 

In FlyBase HSS dataset which are those genes with high sequence similarity, it is 

expected that the PL measure would be small. Therefore it is more desirable for us to 

have the genes with PL = 0, 1 rather than 6, 7 and more. As shown in Figure 3.27 the MF 

datasets acts as what we expected. For example, most of the gene pairs (near 70%) with 
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high sequence similarity have the path length value less or equal to two. the percentage 

decreases as the distance (PL value) increases. 

In BP dataset as it is shown in the Figure 3.27 less than 5% have the PL value less than or 

equal to two. When the path length increases the percentage of the genes with greater 

distance (bigger PL value) also increases.  

This shows that the PL would not be a suitable measure to be used in biological process 

(BP) ontology.  
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Figure 3.27.  Comparison PL between BP and MF in HSS FlyBase dataset 

 

For the genes with no sequence similarity both ontologies of BP and MF show correlation 

with sequence similarity. See Figure 3.28. 
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PL for BP and MF in FlyBase-NSS
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Figure 3.28.  Comparison PL between BP and MF in NSS FlyBase dataset 

 

However the desired trend has been observed in another experiment with a dataset of 

4000 protein pairs from Human-Yeast [54]. Each Biological Process and Molecular 

Function datasets are shown separately in Figure 3.29 and Figure 3.30. 

As it is shown in Figure 3.29 the highest percentage of the gene pairs with path length of 

less than two is related to the genes with high sequence similarity (HSS) and the highest 

percentage of the gene pairs with the PL value of greater than 7 is for the gene pairs with 

no sequence similarity (NSS).  

For those gene pairs that we measured their PL value based on their annotated terms in 

MF ontology (Figure 3.30) we see that the highest percentage of the gene pairs with path 

length of less than two is related to the genes with very high sequence similarity (IO set) 

and the highest percentage of the gene pairs with the PL value of greater than 7 is for the 

gene pairs with no sequence similarity (NSS).  

This also shows that MF in dataset shows more correlation with sequence similarity. 
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Figure 3.29. Distribution of PL in Human-Yeast dataset using BP terms 
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Figure 3.30. Distribution of PL in Human-Yeast dataset using MF terms 
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Now we consider each dataset of gene pair based on their sequence similarity separately. 

In IO dataset high percentage (48%) of the protein pairs have the path length less than 2 

for the time that we consider their molecular function (MF) terms to calculate the PL 

value. The percentages of the protein pairs with the PL value between 2 and 7 and PL 

value greater than 7 decreases to 35%, 18% respectively that is what we expect from the 

pairs that have the very high sequence similarity (IO). 
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Figure 3.31. MF vs. BP in Human-Yeast IO dataset 

 

On the other hand, both the Molecular Function and Biological Processes datasets in HSS 

and LSS show high percentage of protein pairs with the path length value greater than 2 

and less than 7.  See Figure 3.32 and Figure 3.33. 
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Human-Yeast Dataset path length distribution for 
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Figure 3.32. MF vs. BP in Human-Yeast HSS dataset 
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Figure 3.33. MF vs. BP in Human-Yeast LSS dataset 
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For NSS dataset BP shows high percentage of pairs with PL value greater than 7. 

Although the MF shows lesser percentage in compare with the BP, still the result is 

acceptable (40% of the pairs have the PL greater than 7). See Figure 3.34. 
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Figure 3.34. MF vs. BP in Human-Yeast NSS dataset 

 

In general using BP terms in our measure to calculate the biological similarity between 

the genes shows less correlation with sequence similarity in compare with the time that 

we want to use MF terms to find the functional similarity between the genes. 

 

 

3.5. Conclusion  

Gene Ontology is considered the most comprehensive and reliable resource for functional 

annotations of gene products. The existing techniques for finding gene functional 
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similarity based on GO rely mainly on IC or node depth. Little effort has been done for 

investigating the Path length feature as a metric or indicator for gene functional 

similarities.  The work presented in this chapter is an attempt to fill this gap. We 

presented a novel technique for finding gene functional similarity based on GO 

annotation terms. The method is based on the average shortest path length between the 

GO terms annotated for both genes in a given gene pair. We evaluated the proposed 

method with a series of experiments on large groups of genes from two genomes SGD 

and FlyBase. We have shown that this method correlates very well with gene sequence 

similarity by comparing large numbers of gene pairs with sequence similarities computed 

by one the most reliable algorithms for that purpose (Blast). We have shown further that 

randomly selected gene pairs have no significant (by-chance) pattern with path length. 
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4. A NEW GO STRUCTURE BASED MEASURE WITH 

EVALUATION USING SGD PATHWAYS 

The length of the shortest path (PL) between two terms in a given ontology has been 

proved to be a good indicator of the semantic distance (semantic distance is the inverse of 

semantic similarity) between the two terms [1, 46, 12, 13, 44].  In this chapter, we 

compute path length between GO terms and modify it by considering the number of 

distinct minimum-length paths between the terms. Then we measure the similarity 

between two genes by using the semantic similarity values between their GO annotation 

terms and also considering the number of common GO terms between the two genes.  

 

4.1. Distance between GO terms 

To measure the similarity between genes we need to compute the distance (shortest path 

length) between GO terms annotated for those genes. The following are some notes that 

we should consider: 

1- Each gene or protein is annotated with one or more GO terms. 

2- Each two GO terms could have more than one minimum path among them. So 

that there may be more than one Least Common Ancestor (LCA) between two 

terms. As an example, consider the Figure 4.1 in which, each node represents a 
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GO-term. The LCAs between node_6 and node_1 are node_10 and node_11, 

because, the two nodes could be reach from 2 paths of “6-10-7-5-1” and “6-10-

11-5-1”. Either of these paths has the Path Length of 4 which are the reason for 

the existence of two different LCAs. 

3- In this algorithm the number of LCAs affects the measure of functional similarity. 

If two genes are related to each other from several different paths, it means that 

they have more functional similarity that those who have only one path between 

them 

 

 

Figure 4.1.  A graph to represent multiple paths in GO 

 

As an example consider the following gene pair from FlyBase [67]: 

The first gene InR is annotated with 4 Go-terms and the second gene Ror is annotated 

with 3 GO-terms. See Table 4.1. 
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Gene1: InR GO:0004713 GO:0005009 GO:0005520 GO:0005520 

Gene2: Ror PL Nmp PL nmp PL nmp PL nmp 

GO:0004713  0  0  2 1 10 1  11 1 

GO:0004714  1  1  1 1  9 1  10 1 

GO:0005030  9 1 5  1  3 1 8 2 

Table 4.1. Path Length (PL) and number of minimum path (nmp) between the GO-terms 

for InR and Ror genes from FlyBase organism 

 

Let us define the path length function between two GO terms gox and goy as follows: 

 

PL(gox, goy) = the minimum path length in the GO graph between 

the two GO terms gox and goy 

  (1) 

 

But there might be more than one minimum-length path between gox and goy.  We count 

number of distinct paths between gox and goy in the GO hierarchy.  Two GO nodes might 

have several paths between them and among which there are two or more paths with the 

minimum length. This means that we can have more that one Least Common Ancestor 

(LCA) for two GO terms in the GO tree. The larger the number of minimum paths 

between two GO terms, the more similar they are. To test this hypothesis we modified the 

PL, Eq(1), by dividing it by number of minimum paths nmp between gox and goy, we call 

modified path length PLm. Then PLm (gox, goy) is defined as: 
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{
   

 

where nmp is the number of minimum paths between gox and goy and w1 is a weight 

factor to determine the contribution of nmp in PLm.  In our evaluations, we found that 

 0.6  w1 =  gives the best results.  

 

Example: As an example, in Figure 4.2, the minimum path length between the two GO 

terms GO:0042626 and GO:0004129 is 7 using edge counting:  

  PL(GO:0042626 , GO:0004129) = 7. 

 

PL(gox, goy)    if nmp = 1 

 

PL(gox, goy)/w1.nmp,  otherwise                                                                                 (2) 
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Figure 4.2. Part of the GO to illustrate the paths between two GO terms 0042626 and 

0004129 

 

We notice that there are 3 paths between GO:0042626 and GO:0004129. The first path of 

length 7 is via the LCA node GO: 0003824, while the second and third paths are via the 

LCA nodes GO: 0003674 and GO: 0002215 respectively. 

 

LCA (GO:0042626, GO:0004129) = {GO:0003824, GO: 0003674, GO: 0002215} 

 

Minimum-Paths (GO:0042626, GO: 0004129) =  

{ 42626-16820-16817-16787-3824-16491-15002-4129;  42626-43492-5215-3674-3824-

16491-15002-4129;  42626-43492-5215-15075-8324-15077-15078-4129 } 
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The 3824 and 5215 that have the bold format are the least common ancestor of the two 

target nodes. All the relations (edges) in Figure 4.2. are an “is-a” relationship, i.e., each 

node has an “is-a” relationship with its parent node.  Using Eq (2) the modified path 

length (PLm) between these two GO terms is calculated as follows: 

 

89.3
36.0

1
7)0004129:,0042626:( =

×
×=GOGOPLm  

 

 

4.2. Distance between genes 

Given two genes Gp and Gq such that gene Gp is annotated with a set of n different GO 

terms, we call it the set GOp:  GOp = {gop
1
, gop

2
, …., gop

n
}, and similarly,  the annotation 

set for gene Gq = GOq = {goq
1
, goq

2
, …., goq

m
}; that is, gene Gq is annotated with m 

different GO terms.   From these two sets, GOp and GOq, we compute an n x m matrix of 

PLm values between GO term pairs PLm(gop
i
 , goq

j
) for all i = 1, .., n and j = 1, …, m. 

Then we calculate the average of all PLm values in the matrix which will be the PLm for 

the two genes, that is: 

mn

n

i

m

j

q

j

p

i
gogo

m
PL

×
=

∑ ∑
= =1 1

qpm

),(

 )G ,(G PL                                         (3) 

 

Now, number of minimum paths (nmp) between the two GO terms has been considered 

as a positive feature for similarity and thus contributed to similarity as we have seen in 

Eq(2).  As we mentioned earlier, our method distinguishes between two different paths: 
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paths of length > 0 and paths of length 0 (common terms). Paths of length > 0 has been 

considered in calculating PLm of two GO terms (in Eq.2) while the contribution of paths 

of length 0 will affect the PLm of two genes. That is, if there is one or more paths of 

length 0 (i.e., one or more common GO terms) in the annotation terms of the two genes 

then this affects their PLm value.  If the two genes Gp and Gq have one or more common 

terms between them, then we divide their PLm (eq.3) by 2 times the number of common 

terms between Gp and Gq:     

mnnct

n

i

m

j

q

j

p

i
gogo

m
PL

××
=

∑ ∑
= =1 1

qpm

),(

2

1
 )G ,(G PL                           (4) 

 

where nct is the number of common GO terms between Gp and Gq.  If Gp and Gq have no 

common terms between them (nct = 0) then we use equation (3).  Notice that the number 

of common terms (nct) is not considered in the summation of PLm in equation (2) because 

path length is 0 and dividing it by w1*nmp will not reduce the result (eq.2). To have 

common terms between two genes means that the genes are closer and have common 

functionality. So the distance (path length) between them should be less.  

 

Example: Consider the following example from SGD: The two genes ABF1 and IFH1 are 

annotated with the following Go-terms: 

 

GOABF1 ={3682, 8301, 3677, 3700, 16563, 16564} 

GOIFH1 = {3700, 3704} 
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The 26×  matrix containing the pair-wise path length (PL) and nmp between their GO 

terms is shown in Table 4.2. The PLm between IFH1 and ABF1 is computed as follows: 

 

PLm(IFH1, ABF1) = 
12

43

1

1
3

1

1
3

1

1
3

1

1
6

1

1
7

1

1
5

1

1
2

1

1
2

1

1
1

1

1
2

6.02

1
4

×

×

×+×+×+×+×+×+×+×+×+×+
×

×

= 1.6 

 

 

 IFH1 

GO:0003700 GO:0003704 

 

 

 

 

ABF1 

 PL nmp PL Nmp 

GO:0003682 4 2 5 1 

GO:0008301 2 1 7 1 

GO:0003677 1 1 6 1 

GO:0003700 0 0 3 1 

GO:0016563 2 1 3 1 

GO:0015564 2 1 3 1 

Table 4.2. PL and nmp values between GO terms of two SGD genes (ABF1 and IFH1). 

 

 

4.3. Similarity between Genes 

Finally, the functional similarity between two genes Gp and Gq is as follows: 

 

  )G ,(GPL - max  )G ,Sim(G qpmgo_plqp =                               (5) 

 

Therefore, for the last example we have:  
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Sim(Gp, Gq) = 15 - 1.6 = 13.4 

 

The maxgo_pl in  the formula above is the maximum PL value in GO, in our experiments, 

we used maxgo_pl = 15 because, according to the research done by Delfs et. al [15] the 

Gene Ontology had a depth of 13 levels based on the study they had in the year 2003. 

The depth of gene ontology never remains the same and it would be gradually increasing 

by the advent of new GO terms. We have used depth 15 in our experiments but the depth 

and the number of the words in gene ontology tend to be changed in future.  

 

 

4.4. Experimental Results and Evaluation  

There are few methodologies for evaluating the similarity values computed by a measure. 

In NLP, for example, the two common approaches for comparing the computed semantic 

similarity values of a given measure is (a) by the correlation with human scores using a 

dataset of term pairs scored for similarity by human evaluators; (b) by using the measure 

in an application like information retrieval (IR) system or text categorization [12, 13].   In 

this thesis since we are in the context of gene functional similarity using GO annotations, 

the evaluation methodologies include: - comparing the computed similarity values with 

gene sequence similarity [23, 13, 54, 1] with gene expression profiles [51], or using gene 

pathways and clusters information to validate the results [61].  In this chapter we 

followed the third approach, as in [61], and we compared our measure with two measures 

[48, 61] .  
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The semantic similarity measure of Resnik [48] calculates the similarity between two 

terms [t1, t2] in Ontology (e.g., WordNet) as the information content (IC) of the least 

common ancestor (LCA) of t1, t2.  As what Sevilla et al. (2005) [51] found from the 

analysis of the correlation between gene expression and other IC based measures (Resnik, 

1995[48]; Jiang and Conrath, 1997 [23]; Lin, 1998 [30]), Resnik's measure turned out to 

be more accurate than the others.  For this reason, we chose to compare our method 

experimentally with Resnik’s measure. For that, we measured the similarity of gene pairs 

in SGD pathways obtained from http://pathway.yeastgenome.org/. We have obtained 

pathways #5 (allantoin degradation) and #6 (arginine biosynthesis) containing 4 and 7 

genes respectively (pathways 1 to 4 contains less than 3 genes each).  The similarity 

values among the gene pairs of pathways 5 & 6 are shown in Table 4.3 for both our 

method and Resnik’s measure. First, we notice that in pathway #5 with 4 genes (DAL1, 

DAL2, DAL3, DUR1,2) and 6 gene pairs, both techniques produced consistent results.  

 

  
Gene1 Gene2 Resnik Proposed 

  DAL1 DAL2  2.47 11 

  DAL1 DAL3  2.47 11 

Pathway 5 DAL1 DUR1,2 1.74 9.5 

  DAL2 DAL3  5.22 13 

  DAL2 DUR1,2 1.74 9.5 

  DAL3 DUR1,2 1.74 9.5 

  ARG1 ARG2 0.28 6.67 

  ARG1 ARG3 0.28 8 

  ARG1 ARG4 0.28 8 

  ARG1 ARG5,6 0.28 8.58 

  ARG1 ARG8 0.28 8 

  ARG1 ECM40 0.28 6.67 

  ARG2 ARG3 1.38 7.5 

  ARG2 ARG4 0.28 5.83 

Pathway 6 ARG2 ARG5,6 1.01 6.67 

  ARG2 ARG8 1.38 7.5 

  ARG2 ECM40 5.76 14.5 

  ARG3 ARG4 0.28 7 
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  ARG3 ARG5,6 1.01 8.5 

  ARG3 ARG8 1.38 9 

  ARG3 ECM40 1.38 7.5 

  ARG4 ARG5,6 0.28 7.67 

  ARG4 ARG8 0.28 7 

  ARG4 ECM40 0.28 5.83 

  ARG5,6 ARG8 1.01 8 

  ARG5,6 ECM40 1.10 6.67 

  ARG8 ECM40 1.38 7.5 

Table 4.3. Comparison of our result with Resnik’s result in two pathways from SGD. 

 

For example, both measures gave the gene pair (DAL2, DAL3) the highest similarity 

whereas the 3 pairs (DAL1, DUR1,2; DAL2, DUR1,2; DAL3, DUR1,2) received the 

lowest similarity. 

Pathway #6 demonstrated some differences in the similarity values produced by our 

measure and Resnik’s measure.  For example, if we compare the two pairs (ARG2, 

ARG3) and (ARG3, ARG5,6) we see that Resnik’s measure gives higher similarity value 

(1.38) for (ARG2, ARG3) than for (ARG3, ARG5,6) (1.01), however, in GO tree, the 

distance between the terms annotating (ARG2, ARG3) and (ARG3, ARG5,6) are 9 and 6 

respectively. Our measure gave higher similarity (8.5) for (ARG3, ARG5,6) than for the 

other pair (7.5) which is more consistent with the annotations in the GO tree.  Let us 

consider the pair (ARG4, ARG8) with the pair (ARG1, ARG8). Both pairs have the same 

similarity of 0.28 based on Resnik measure, but in GO graph we notice that the distance 

between the GO terms annotating ARG4 and ARG8 is larger than the distance of the GO 

terms of ARG1 and ARG8. Our measure reflects this fact and gives higher similarity for 

the pair (ARG1, ARG8) than for the pair (ARG4, ARG8), see Table 4.3. Thus our 

measure is closer to human sense than Resnik’s measure. Comparing (ARG1, ARG5,6)  

and (ARG1, ARG2) shows that there are three paths of minimum length 7 between the 
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GO terms of first gene pair, and for the second gene pair there are 2 paths with the 

minimum length of 10 between them. Therefore, it is a logical perspective that the first 

pair (i.e.,(ARG1, ARG5,6)) is more similar than the second one.  Again,  Resnik’s 

measure gives the same similarity value (of 0.28) for these two pairs while our measure 

gives similarity values of 8.5 and 6.6 to them, respectively, which shows that the first pair 

is more similar  and this is closer to the human (curators) similarity estimates when they 

annotated these genes. Let’s examine, further, the two pairs of (ARG4, ARG5,6) and 

(ARG3, ARG4). In GO hierarchy there are 3 distinct paths of length 8 between the terms 

of first pair (ARG4, ARG5,6) while there is only one path, also of length 8, between the 

GO terms of the second pair. Therefore the genes in the first pair are more bounded to 

each other compared with the second pair. As we see in Table 4.3, both pairs have the 

equal similarity value of 0.28 by Resnik’s measure whereas the proposed measure gives 

the value of 7.6 to the first and 7 to the second pair which is again evidence that the 

proposed measure produces better results. 

In another evaluation phase, we examined the proposed measure along with a newly 

published measure (Wang et al. 2007) [61]. In experimenting with the same pathways as 

[61], our measures produced results that are very competitive and sometimes closer to 

human perspective which is the criteria that Wang et al. have emphasized the most [61].  

 

 ARO8 ARO9 ARO10 PDC6 PDC5 PDC1 SFA1 ADH5 ADH4 ADH3 ADH2 ADH1 

ARO8  15 7.3 7 7 7 7 7 6 7 7 7 

ARO9   7.3 7 7 7 7 7 6 7 7 7 

ARO10    14.9 14.9 14.9 7.3 7.3 6.3 7.3 7.3 7.3 

PDC6     15 15 7 7 6 7 7 7 

PDC5      15 7 7 6 7 7 7 

PDC1       7 7 6 7 7 7 

SFA1        14.7 11 14.7 14.7 14.7 

ADH5         14 15 15 15 

ADH4          14 14 14 

ADH3           15 15 

ADH2            15 
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ADH1             

Table 4.4. Similarity values among genes in tryptophan degradation pathway based on 

our algorithm 

 

 

In [61], the proposed measure is used to cluster the genes in each pathway and reported in 

their paper the results for pathway #141 (tryptophan degradation pathway). We tested 

our method on SGD pathway 141 and the similarity values for our measure and their 

measure are shown in Tables 4.4 and 4.5, respectively. Moreover, Figures 4.3 and 4.4 

show the clusters that resulted from both methods. 

 

 ARO8 ARO9 ARO10 PDC6 PDC5 PDC1 SFA1 ADH5 ADH4 ADH3 ADH2 ADH1 

ARO8    1 0.22 0.20 0.20 0.199 0.199 0.199 0.199 0.199 0.173 0.199 

ARO9       0.217 0.199 0.199 0.199 0.199 0.199 0.199 0.199 0.173 0.199 

ARO10          0.896 0.896 0.896 0.221 0.217 0.217 0.217 0.190 0.217 

PDC6             1 1 0.199 0.199 0.199 0.199 0.173 0.199 

PDC5                1 0.199 0.199 0.199 0.199 0.173 0.199 

PDC1                   0.199 0.199 0.199 0.199 0.173 0.199 

SFA1                      0.779 0.779 0.779 0.677 0.779 

ADH5                         1 1 0.869 1 

ADH4                            1 0.869 1 

ADH3                               0.869 1 

ADH2                                  0.869 

ADH1                                     

Table 4.5.  Similarity values among genes in tryptophan degradation pathway based 

Wang et al.’s measure [61]. 
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Figure 4.3. Clustering genes in tryptophan degradation pathway based on our algorithm 

 

Comparing these two measures on this particular gene group, we found that both 

measures give very similar and consistent results (Tables 4.4 & 4.5) with few differences 

in the resulted similarity values as follows. The similarity value by our measure is 14.7 

for the pair (SFA1, ADH5) and 14.0 for the pair (ADH4, ADH5); therefore SFA1 will be 

clustered with ADH5 group sooner than ADH4 according to our measure. But in Wang’s 

method ADH4 is clustered with ADH5 before SFA1 is clustered with the ADH5 group, 

since the similarity values are 0.87 and 0.78 for (ADH4, ADH5) and (SFA1, ADH5) 

respectively. 
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Threshold Initial 1.000 0.890 0.860 0.770 0.220 0.210 
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Figure 4.4. Clustering genes in tryptophan degradation pathway based on [61]. 

 

By examining the GO annotation terms of these genes, we find that SFA1 and ADH5 are 

both annotated with the same GO term “alcohol dehydrogenase activity” , while ADH4 

& ADH5 have no common terms between them; See table 4.6. This confirms that our 

measure is closer to human perspective than the measure of Wang et al. [61].  

 

http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&show_associations=list&depth=0&session_id=1594b1183035322&query=GO:0004022
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ADH5 

GO:0004022 
alcohol dehydrogenase activity 

SFA1 

GO:0004022 
alcohol dehydrogenase activity 

GO:0004327 
formaldehyde dehydrogenase (glutathione) activity 

ADH4 

GO:0004024 
alcohol dehydrogenase activity, zinc-dependent 

Table 4.6. Three SGD genes with their annotation by GO terms. 

 

 

4.5. Discussion and Conclusion 

We presented a simple measure for semantic similarity of GO terms and then the 

functional similarity of genes. The measure is based strictly on the ontology structure 

features of the GO.  Specifically, our measure estimates the semantic similarity between 

two GO terms using the various paths between them. We assign a higher weights in the 

similarity metric for gene pairs having common GO terms (having paths of length = 0) 

between their annotation sets. We also assign weights for number of minimum length 

paths between two terms. The strength of our measure comes from the idea that we 

consider all paths between the GO terms, and the paths of length zero (common terms) 

between two genes are treated differently. If two GO terms have multiple minimum paths 

between them then they have more than one LCA (least common ancestor) and hence 

they share more commonalities than those GO terms with one minimum path between 

them. We examined our measure with a large number of gene groups from SGD 
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pathways (we cannot report all the results for space limitations). The experimental 

results showed that our method performs better than the measure of Resnik in most cases 

or equal in the rest of the cases, and very competitive or sometimes better than Wang et 

al.’s measure.   
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5. CORRELATION BETWEEN DEPTH AND PATH LENGTH OF 

GO NODES WITH GENE SEQUENCE SIMILARITY 

In this chapter we present another new similarity measure (SimPLD) for calculating the 

semantic similarity of terms in Gene Ontology based on the depth and path length 

features in GO hierarchy. That is, this method is based strictly on the ontology structure 

features (i.e., depth and path length) without using any other information sources (like 

biomedical text literature, or gene expression data). The method computes the similarity 

between two genes as numeric figure  based on the average of SimPLD between the GO 

terms annotated for both genes in a given gene pair.  

 

 

5.1. Semantic Similarity between GO terms 

In Chapter 3 we proved that the length of the shortest path (PL) between two terms in a 

given ontology is a suitable measure of the semantic similarity between the two GO 

annotation terms.  In this chapter, we also consider the depth of the least common 

ancestor of the two terms in the previous measure which was the path length between the 

two terms. Then the similarity value between two genes will be the semantic similarity 

values between their GO term annotations.  
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The similarity between two GO terms is defined as  

 

)
2

),(
log()

_

)),((
log(),(

Maxdpth

goygoxPL

dpthMax

goygoxlcadepth
gogoSim yxPLD

×
−=  
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PL(gox, goy) is the minimum path length in the GO graph between the two GO terms gox 

and goy.  In formula 1, the first phrase is divided by the maximum of depth in the GO and 

second phrase is divided by 2 times the maximum depth in GO which implies the 

maximum PL in the gene ontology. The division operation is for the purpose of 

normalization and has scaled down the value of SimPLD in our computations. There is no 

bottom or upper limit for SimPLD value but in our experiment we got the values ranged 

between -2 and 2.   

 

 

5.2. The Semantic Similarity of Genes 

Given two genes Gp and Gq such that gene Gp is annotated with a set of n different GO 

terms, we call it the set GOp: GOp = {gop
1
, gop

2
, …., gop

n
}, and similarly,  the annotation 

set for gene Gq = GOq = {goq
1
, goq

2
, …., goq

m
}; that is, gene Gq is annotated with m 

different GO terms. The similarity between genes are measured by calculating the 

average of SimPLD between the GO terms annotated for both genes in a given gene pair. 
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5.3.  Experiments and Results  

 

5.3.1. Dataset 

The sample size which is used in this chapter consists of 1000 gene pairs from 

SGD(Saccharomyces cerevisiae) [53] and 2000 pairs from FlyBase  (Drosophila 

melanogaster)  [67] genomes in one experience and 4000 protein pairs from a dataset that 

is used on [54]. The sample size is consistent with those researches done on the same 

similar subject. Indeed the size is not exactly the same or larger, still it is considered as a 

reasonable size. We mention some examples as the proof of this claim: Schlicker et al. 

2006 [54] has applied their measure on 682 protein pairs from human and saccharomyces 

cerevisiae proteins with very high sequence similarity (IO set), 989 protein pairs with 

high sequence similarity (HSS set) and  989 protein pairs with low sequence similarity 

(LSS set). They have applied their measure to 1356 protein pairs with no sequence 

similarity (NSS set). Another research done by Lord et al. [31] has applied their measure 

of semantic similarity to those proteins with the evidence code of TAS extracted from 

approximately 7000 human proteins in Swiss-Prot. Dolan et al. [18] investigated on the 

consistency of the annotations for genes related to mouse and human. They could find 

out, of the complete set of human and mouse and 11860 MGI curated genes, 3948 genes 
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have only MGI GO annotation and 4994 genes have only GOA annotation and only 1572 

genes are annotated by both groups.  Khatri et al. [27] worked on genes from Homo 

Sapiens genome. From the 11203 genes and 5201 ontology category and 58 millions 

gene-function association they could extract 212 additional gene-function assignments, 

out of which 161 were confirmed in later releases of gene ontology database. Therefore 

the size of the dataset used in this chapter is consistent with the size of dataset used in 

other researches. 

In this chapter as what we did in chapter 3 for the evaluation, we divided the datasets into 

different groups based on the Blast E-value of the gene pairs. Those pairs with zero 

values are considered sequentially similar and the E-value of 1 shows that there is not a 

significant similarity among the genes. Remember that we grouped the gene pairs with 

the Blast E-value ≤10
-5

 as high sequence similarity (HSS). The gene pairs with low 

sequence similarity (LSS) are those with the E-value>10
-5

 but less than one. The gene 

pairs with no sequence similarity (NSS) are those with the E-value=1. 

 

5.3.2. Distribution of SimPLD 

As it is shown in Figure 5.1, in FlyBase dataset, nearly all of the genes that have no 

sequence similarity have the SimPLD value of less than zero. Among those with high 

sequence similarity more than 80% have the SimPLD of greater than zero which shows a 

very high correlation of our result with the sequential similarity. 
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Figure 5.1. Distribution of SimPLD value between gene pairs in FlyBase dataset 

 

In Figure 5.2 which is related to the SGD dataset, more than 90% of NSS genes, have the 

SimPLD value of less than zero. More than 70% of LSS genes have the SimPLD value of 

less than zero and more than 60% of HSS genes have the SimPLD value of greater than 

zero which still shows agreement with sequential similarity. 
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Distribution of sim for SGD
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Figure 5.2. Distribution of SimPLD value between gene pairs in SGD dataset 

 

In Figure 5.3 more than 90% of NSS genes from the third dataset, have the SimPLD value 

of less than zero. Half of the LSS proteins have the functional similarity of less than zero 

and the other half have the SimPLD value of greater than zero which we expect from the 

proteins with low sequence similarity. Also more than 60% of HSS genes have the 

SimPLD value of greater than zero which is correlated with the sequential similarity 

measure. Therefore for the most of the genes with high sequence similarity we have 

found SimPLD values greater than zero and those with no sequence similarity have the 

SimPLD value of less than zero. 
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Distribution of sim for Human-Yeast dataset
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Figure 5.3. Distribution of SimPLD value between gene pairs in Human-Yeast dataset 

 

We also computed the average SimPLD value for all gene pairs in the SGD with high 

sequence similarity (HSS) which was 0.11 whereas the average SimPLD value for all SGD 

with low sequence similarity (LSS) and no sequence similarity (NSS) gene pairs were -

0.54 and -0.85 respectively. For FlyBase we had the similarity values of 0.71 and   -0.92 

for HSS and NSS respectively. This is also another indicator that the HSS gene pairs have 

significantly higher sim values compared with the LSS and NSS. 

We have also plotted the distribution of SimPLD separately for each dataset that we had. 

Here we analyze it shortly. In figures below the Y axis is the value of SimPLD and the 

gene pairs are along the X axis that are sorted by their SimPLD value.  For example, in 

Figure 5.4 FlyBase gene pairs have the minimum SimPLD value of -1.5 and the maximum 

SimPLD value of 2.5. The first dataset is for FlyBase gene pairs with high sequence 
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similarity. Although we have some gene pairs with SimPLD of negative values but most of 

them have the positive value. It shows compatibility with sequence similarity. 
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Figure 5.4. SimPLD in FlyBase HSS dataset 

 

The second dataset is for FlyBase gene pairs with low sequence similarity. Although we 

have some gene pairs with SimPLD of positive values but most of them have the negative 

values. It also shows correlation with BLAST value. 
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Figure 5.5. SimPLD in FlyBase NSS dataset 

 

We applied the same measure to SGD and observed that for the pairs with high sequence 

similarity some of the gene pairs have the SimPLD of negative, we had lots of value zero 

and some of the positive values. For the dataset with low and no sequence similarity the 

number of zero and positive values decreases and the number of negative increases as we 

move to the lower sequence similarity. It is also showing a good correlation with 

sequence similarity. 
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Figure 5.6.  SimPLD in SGD HSS dataset 
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Figure 5.7. SimPLD in SGD LSS dataset 
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Figure 5.8. SimPLD in SGD NSS dataset 

 

For Human-Yeast dataset HSS, LSS and NSS show the correlation with sequence 

similarity but the IO dataset with the highest sequence similarity is expected to have 

higher SimPLD value in compare with HSS. But as it shown in Figure 5.9 the number of 

gene pairs with positive SimPLD value is less than those in HSS. This might have the 

meaning that the sequence similarity in IO dataset does not necessarily mean that the 

gene pairs are more functionally similar. It means that they are sequentially similar, but 

they are not functionally similar. 
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Figure 5.9. SimPLD in Human-Yeast IO dataset 
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Figure 5.10. SimPLD in Human-Yeast HSS dataset 
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Figure 5.11. SimPLD in Human-Yeast LSS dataset 
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Figure 5.12. SimPLD in Human-Yeast NSS dataset 

 

Figure 5.13 shows some snapshots of the running program. The program gets the 

annotation files for the three datasets (FlyBase, Human-Yeast, SGD) as its input in 
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addition to the excel file that contains the name of genes in each gene pair with its 

associate E-Value for later comparison and based on what is selected by the user in the 

first menu of the application, the sequence similarity menu will be populated accordingly. 

For example, for FlyBase we have two items of HSS and NSS in the sequence similarity 

menu and for Human-Yeast dataset we have IO, HSS, LSS, NSS items and for SGD 

dataset we have HSS, LSS and NSS items.  

 

Figure 5.13. Sample of running of the program 
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The output of the program is the files in excel format that contains the path length 

between the GO terms and the depth of Least common ancestor of the terms related to 

each gene in a gene pair. A part of it is shown in Table 5.1. Sample of the output of 

application 

 

Gene1 Gene2 Evalue PL_List  depth_list 

InR Ror 1.10E-50 0/1/9/]/2/1/5/]/10/9/3/]/11/10/8/]/ 6/6/1/6/6/3/1/1/4/1/1/1/ 

Alk Nrk 1.50E-52 0/1/]/1/0/]/1/2/]/ 6/6/6/6/6/5/ 

htl dnt 1.00E-25 0/1/]/2/1/]/ 6/6/6/6/ 

Pak slik 4.80E-43 1/2/]/0/1/]/ 6/6/4/4/ 

Cad96Ca Nrk 5.90E-42 1/2/]/0/1/]/1/0/]/ 5/5/6/6/6/6/ 

Eph Cad96Ca 1.10E-41 1/0/1/]/2/1/0/]/3/2/1/]/ 5/6/6/5/6/6/5/6/6/ 

Eph shark 1.30E-39 0/1/]/1/2/]/2/3/]/ 6/6/6/6/6/5/ 

Ror Ret 4.10E-38 0/1/]/1/0/]/9/4/]/ 6/6/6/6/1/3/ 

tak1 Takl1 3.40E-54 3/]/1/]/0/]/ 5/5/5/ 

tak1 CG5169 2.50E-21 2/]/2/]/1/]/ 5/4/4/ 

tak1 CG7097 4.00E-19 1/2/]/3/2/]/2/1/]/ 5/5/6/4/6/4/ 

Pak3 CG11870 7.70E-25 1/]/ 6/ 

CG5169 hpo 1.40E-70 1/0/5/]/ 6/4/1/ 

CG5169 Dsor1 3.00E-40 0/1/4/]/ 4/4/5/ 

Table 5.1. Sample of the output of application 

 

As you see the PL_List contains the list of path length between the GO terms in gene 

pairs. Consider the first row of the output in table above.  

Ror is a gene that is annotated with three GO-terms that are GO:0004713, GO:0004714, 

GO:0005030. InR is a gene that is annotated with four GO-terms that are GO:0004713, 

GO:0005009, GO:0005520, GO:0005520. The PL_List for these two genes is 

0/1/9/]/2/1/5/]/10/9/3/]/11/10/8/]/. Each three number is separated with a separator for 

being used later to build a matrix. The first Go term of InR which is GO:0004713 is 

compared with all the three GO terms of Ror.  Then a matrix can be built from this PL-

List. See Table 5.2. 
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 GO:0004713 GO:0005009 GO:0005520 GO:0005520 

GO:0004713 0 2 10 11 

GO:0004714 1 1 9 10 

GO:0005030 9 5 3 8 

Table 5.2. Path Length between Ror and InR GO-terms 

 

The depth_list (6/6/1/6/6/3/1/1/4/1/1/1/) also contain the depth between them. Table 5.3 

shows how they are placed inside our matrix. 

 

Gene1: InR GO:0004713 GO:0005009 GO:0005520 GO:0005520 

Gene2: Ror PL depth PL depth PL depth PL depth 

GO:0004713 0 6 2 6 10 1 11 1 

GO:0004714 1 6 1 6 9 1 10 1 

GO:0005030 9 1 5 3 3 4 8 1 

Table 5.3. Depth and PL between Ror and InR GO-terms 

 

Then the formula introduces in sections 5.1 and 5.2 is applied to these values to find the 

semantic similarity between two genes. 

 

 

5.4. Discussion and Conclusion 

We have used the path length along with the depth of LCA of two terms to measure the 

semantic similarity between GO terms that leads to functional similarity measure 

between genes. We called this measure SimPLD ( short for Similarity measure based on 

PL and Depth) The existing techniques for finding gene functional similarity based on 
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GO rely mainly on information content(IC) of the terms. We presented a novel technique 

for finding gene functional similarity based on GO annotation terms. The method is based 

on the average of our measure (SimPLD) between the GO terms annotated for both genes 

in a given gene pair. We evaluated the proposed method with a series of experiments on 

large groups of genes and proteins from two genomes of SGD and FlyBase and a dataset 

of Human-Yeast protein pairs. We have shown that this method correlates very well with 

gene sequence similarity by comparing large numbers of gene and protein pairs with 

sequence similarities computed by one the most reliable algorithms for that purpose 

(BLAST).  

In summary, our evaluation experiments involved more than 3000 genes and 3000 

protein pairs having high, low, or no sequence similarity from three different datasets. All 

the experimental results support the fact that there is significant correlation between the 

sequence similarity of genes and semantic similarity using SimPLD.    This proves that the 

depth of LCA of two terms along with the path length between gene annotation terms 

using GO can be a reliable measure for gene functional similarity.  
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6. CONCLUSION AND FUTURE WORK 

Gene Ontology is the main and most comprehensive resources for research on gene and 

protein functions and structure.  It consists of a set of controlled vocabularies to describe 

the biology and functions of genes and proteins in any organism [9]. GO annotations 

capture the available functional information of a gene or protein and can be used as a 

basis for a measure of functional similarity between genes. Besides the bioinformatics 

resources that hold data in the form of sequences, these data has represented as scientific 

natural language which is easier to be modeled and is more readable to human [32]. Gene 

Ontology is a dynamic evolving project of the GO Consortium in which different sections 

of the ontology are expanded or reorganized as more biological information becomes 

available.  In this thesis we proposed new similarity techniques for finding gene 

functional similarity based mainly on the shortest path length between the GO terms 

annotated for both genes in a given gene pair. For example in chapter 3 we presented a 

measure based on plain path length that simply considered the distance between the GO 

terms in gene ontology and then used the average of these distances to find the similarity 

between the genes. In chapter 4, we considered the number of minimum paths, nmp, and 

the number of common terms, nct, in a given gene pair as contributing features in 

computing the similarity between genes.   In chapter 5, we added the depth feature of the 

least common ancestor of two terms in gene ontology to the measure introduced in 
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Chapter 3.  Then the similarity between the genes was calculated based on the average of 

this measure between the GO terms. The existing techniques for finding gene functional 

similarity based on GO rely mainly on the information content of (IC) of the GO terms.  

PL has never been investigated in the context of GO to estimate the functional similarity 

between genes based on GO annotation terms. PL has been used extensively as a measure 

of similarity in the general English domain using, for example, the WordNet ontology 

[12].  It also has been used in the bioinformatics domain [Rada-1989] [13];  for MeSH 

[36] ontology and from these applications proved that PL in general can be used as a 

good indicator of semantic similarity between terms in a given ontology. This research 

used the PL as one of the most important features in gene ontology.   

The proposed measures have been fully implemented and extensively evaluated.  In the 

evaluation, we compared our proposed measure with the BLAST [11] sequence similarity 

between the sequences of the genes in a given gene pair. We also compared our measure 

with other IC measures like Resnik based on the human perception [54, 61].   Our 

evaluation was similar to other research projects in this field like Schlicker et. al [54] that 

evaluated their work based on the sequence similarity  and Wang et. al [61] that 

compared their measure with Resnik measure [49] based on the justifiability of their 

result with the human perception.  In chapters 3 and 5 we used the first approach of the 

evaluation while in chapter 4 the second approach has been used.  

The experiments were applied on large sets genes from two genomes SGD 

(Saccharomyces cerevisiae) [53] and FlyBase (Drosophila melanogaster) [67]. We also 

tested our measure on a dataset of proteins that Schlicker et. al [54] have used in their 

experiments.  
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The experimental results proved the effectiveness of the proposed techniques in 

measuring the similarity in the GO and gene function domain.  See for examples, Figures 

3.14, 3.15, 3.16, 3.17 that shows the correlation between the plain path length and 

sequence similarity. The comparison of our PLm measure with Resnik and Wang 

measures shows better or equal estimation of similarity between the genes in several 

pathways. For example see the Table 4.3.  Based on PLm measure (Chapter 4) we could 

cluster the genes more accurately than using Resnik measure based on the human 

perception; see Table 4.4.  We also showed , in Chapter 5, that the result of using depth 

and path length along with each other also correlates very well with the sequence 

similarity.   For example see figures 5.1, 5.2 and 5.3. We applied our plain path length 

measure to compute the distance between genes based on using terms in molecular 

function (MF) ontology and terms in biological process (BP) ontology. We found that the 

MF dataset correlates much better with sequence similarity rather that BP dataset. 

 

 

6.1. Future Work 

In future work of this research we would like to apply path length-based measures to 

more datasets from different model organisms.  For more accurate evaluation we also 

would like to measure the similarity between the genes using other information sources 

like the biomedical literature (e.g. Medline). We can also use the microarray data analysis 

to determine expression levels of genes and find the correlation between gene expression 

data with our semantic similarity measure.  Furthermore, we would like to consider the 

number of distinct paths between two GO terms as a potential feature contributing into 
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the semantic distance between the genes. In this research we just considered the number 

of minimum path (nmp) and not the total number of all distinct paths. 

Another interesting feature that we would like to study in the future of this research is the 

effect of the various evidence codes on the performance of the gene similarity measures.   

Another application of our research is by knowing the functions of gene Gy, we can 

predict the function of gene Gx if the similarity value of Gx and Gy is very high. 
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APPENDIX A:  IMPLEMENTATION DETAILS 

Here we want to show parts of the program that is developed to calculate the path length 

between the genes. The detailed of the program is as the following: We used linked list as 

the structure of storing the GO nodes in computing the shortest path length (Please refer 

to Sec. 2.3 and Figure 3.2 in Chapter 3.). Each cell in the linked-list has the following 

properties: 

class CellArray 
    { 
        String _goID; 
        String _goParent; 
        int _goPathLen; 
        String _goParent2; 
        int _goPathLen2; 
        int _distance; 
    } 

 

All the properties are private and we used setter and getter to acess them. Like: 

public String GoID 
        { 
            get { return _goID; } 
            set { _goID = value; } 
        }        
        public String GoParent 
        { 
            get { return _goParent; } 
            set { _goParent = value; } 
        }         
        public int GoPathLen 
        { 
            get { return _goPathLen; } 
            set { _goPathLen = value; } 
        } 
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We use a method of getParent to  get all the parents of a node. Details are as the 

following: 

 

private ArrayList getParents(String termID) 
{ 
    ArrayList is_a_ArrayList = new ArrayList(); 
    XmlDocument goDoc = new XmlDocument(); 
    String GOPath = Application.StartupPath + "\\summerizedGO.xml"; 
    goDoc.Load(GOPath); 
    XmlElement root = goDoc.DocumentElement; 
    XmlNodeList goList = root.GetElementsByTagName("term"); 
 
    IEnumerator inum = goList.GetEnumerator(); 
    while (inum.MoveNext()) 
    { 
        XmlNode node = (XmlNode)inum.Current; 
        String temp = node.Attributes.GetNamedItem("about").Value; 
        int startTrim = temp.IndexOf('#') + 1; 
        String term = temp.Substring(startTrim); 
        //if the term was the same as the input term 
        if (termID == term) 
        { 
            XmlNodeList list = node.ChildNodes; 
            IEnumerator ienum = list.GetEnumerator(); 
 
            while (ienum.MoveNext()) 
            { 
                XmlNode currentChild = (XmlNode)ienum.Current; 
                if (currentChild.Name == "is_a") 
                { 
                    String temp1 =       
currentChild.Attributes.GetNamedItem("resource").Value; 
                    int startTrim1 = temp1.IndexOf('#') + 1; 
                    String parent = temp1.Substring(startTrim1); 
                    is_a_ArrayList.Add(parent); 
                } 
            } 
 
        } 
 
    } 
return is_a_ArrayList; 
} 
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This part of the code called getDistance get two terms and returns the number of 

minimum paths and the distance between the two terms. 

 

public  void getDistance(String term1, String term2,ref double 
distance,ref int nmp) 
//number of minimum path 
{ 
    distance = -1; 
    nmp = 0; 
    if (term1 == term2) 
    { 
        distance = 0; 
        return; 
    } 
    int counter = 0; 
    int minDistance = 100; 
    ArrayList list = new ArrayList(); 
    //contains terms + the parents of each terms + the  
    //parents of the each node that is being added 
 
    //calculate goID,goParent, goPathLen 
    CellArray cell1 = new CellArray(term1);             
    cell1.GoParent = term1; 
    list.Add(cell1); 
     
    CellArray cell2 = new CellArray(term2);             
    cell2.GoParent = term2; 
    list.Add(cell2); 
 
    CellArray currentCell = (CellArray)list[counter];  
    //counter and currentcell points to a cell that its parents should    
be found 
 
    //minDistance keeps the minimum distance between the two GO nodes. 
    while (list.Count > counter && currentCell.GoPathLen < minDistance) 
    { 
        currentCell = (CellArray)list[counter]; 
        ArrayList parents = getParents(currentCell.GoID); 
        //gets the first upper level parents 
        bool found = false; 
        for (int i = 0; i < parents.Count; i++)//for 1{ 
            found = false; 
            String parent = parents[i].ToString(); 
            IEnumerator ienum1 = list.GetEnumerator(); 
            while (ienum1.MoveNext())//to compare from the begining of 
the list 
            //see if there exist the same GOID from before. 
            { 
               CellArray currentEnum = 
(CellArray)ienum1.Current;//checker from begining to end                
 if (currentEnum.GoID != parent)//not found any goID that added 
before         { 
                   // ienum1.MoveNext(); 
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                } 
                else//if current.GOID == parents[i] 
                {if (currentEnum.GoParent == currentCell.GoParent) 
//if 11=11//come from the same path 
{ 
found = true; 
ienum1.MoveNext();  
} else//if 11!=12 //come to the same LCS: not the same path                
{ 
                       found = true; 
if (currentEnum.GoParent2 == "" && currentEnum.GoPathLen2 == 0) 
{ 
     currentEnum.GoParent2 = currentCell.GoParent; 

currentEnum.GoPathLen2 = currentCell.GoPathLen + 1; 
currentEnum.Distance = currentEnum.GoPathLen +                   

currentEnum.GoPathLen2; 
}                        
if (currentEnum.Distance < minDistance) 
     minDistance = currentEnum.Distance; 
}//end else 
   }//end else 
            }//end while 
if (found == false)//if not found the GO add it to the list. 
{ 
        CellArray cell = new CellArray(parent); 
        cell.GoPathLen = currentCell.GoPathLen + 1; 
        cell.GoParent = currentCell.GoParent; 
        list.Add(cell); 
} 

} 
        counter++; 
    }//while end 
    distance = minDistance; 
    for (int i = 0; i < list.Count; i++) 
    { 
        CellArray current = (CellArray)list[i]; 
        if (current.Distance == minDistance) 
        { 
            nmp++; 
        } 
    } 
   //calculate number of minimum distance 
} 
 
 

 

 

Here is the code for getting the name of organism and the sequence simialrity of the 

dataset and finding the similarity between the genes inside the dataset. 
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public static void readAnnotation(String source, String seqSim){ 
 
String path1 = "\\Variation1\\" + source + "_" + seqSim + 
"_variation1.csv"; 
String file1 = Application.StartupPath + path1; 
StreamReader reader = File.OpenText(file1); 
 
String path2 = "\\All_Output\\" + source + "_" + seqSim + "_All.csv"; 
StreamWriter writer = File.CreateText(Application.StartupPath + path2); 
    
writer.WriteLine("Gene1,Gene2,Evalue,PL_List,NP_List,Depth_List,simGO,S
im"); 
      
String file1Line = reader.ReadLine(); 
while (!reader.EndOfStream) 
{ 
        String gene1 = "";String gene2 = "";String evalue = ""; 
        String pl_list = "";String np_list = "";String depth_list = ""; 
        String plv1 = "";         
 
        gene1 = file1Line.Substring(0, file1Line.IndexOf(",")); 
        file1Line = file1Line.Remove(0, file1Line.IndexOf(",")+1); 
 
        gene2 = file1Line.Substring(0, file1Line.IndexOf(",")); 
        file1Line = file1Line.Remove(0,file1Line.IndexOf(",") + 1); 
 
        evalue = file1Line.Substring(0,file1Line.IndexOf(",")); 
        file1Line = file1Line.Remove(0, file1Line.IndexOf(",") + 1); 
 
        plv1 = file1Line.Substring(0, file1Line.IndexOf(",")); 
        file1Line = file1Line.Remove(0, file1Line.IndexOf(",") + 1); 
        pl_list = file1Line.Substring(0, file1Line.IndexOf(",")); 
        file1Line = file1Line.Remove(0, file1Line.IndexOf(",") + 1); 
        np_list = file1Line.Substring(0, file1Line.IndexOf(","));     
  
        file1Line = file1Line.Remove(0, file1Line.IndexOf(",") + 1); 
        depth_list = file1Line.Substring(0); 
        //create pl_list ArrayList 
        ArrayList PL_ArrayList = new ArrayList(); 
        String[] PL_List = pl_list.Split('/'); 
        for (int i = 0; i < PL_List.Length - 1; i++) 
        { 
            PL_ArrayList.Add(PL_List[i]); 
        } 
        //create np_list ArrayList 
        ArrayList NP_ArrayList = new ArrayList();//1/2/3/4/5/ 
        String[] NP_List = np_list.Split('/'); 
        for (int i = 0; i < NP_List.Length - 1; i++) 
        { 
            NP_ArrayList.Add(NP_List[i]);//1,2,3,4,5 
        } 
       //create depth_list ArrayList 
        ArrayList Depth_ArrayList = new ArrayList();//1/2/3/4/5/ 
        String[] Depth_List = depth_list.Split('/'); 
        for (int i = 0; i < Depth_List.Length - 1; i++) 
        { 
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            Depth_ArrayList.Add(Depth_List[i]);//1,2,3,4,5 
        } 
 
        //calculate similarity for GOs 
        //log(Depth(LCA(gox, goy)/maxDepth)-log(PL(gox,    
goy)/2*maxDepth) 
        String simGOString = ""; 
        double simGO = 0;//similarity measure for GO terms 
        double sim = 0;//similarity measure for Genes 
 
         for (int i = 0; i < PL_ArrayList.Count; i++) 
        { 
                 
            double depth = Double.Parse(Depth_ArrayList[i].ToString()); 
            double PL = Double.Parse(PL_ArrayList[i].ToString()); 
            if (PL != 0) 
            { 
                double aa = PL / (2 * maxDepth); 
                double bb = (maxDepth-depth)/maxDepth; 
                double cc = aa*bb+1; 
                double dist = Math.Log(cc, 2); 
 
                simGO = 1-dist; 
            } 
            else 
            { 
                simGO = 1; 
            } 
              
             simGO = Math.Round(simGO, 2); 
             sim += simGO; 
             simGOString += simGO.ToString()+ "; "; 
         } 
         sim = sim / PL_ArrayList.Count; 
         sim = Math.Round(sim,2); 
writer.WriteLine(gene1 + "," + gene2 + "," + evalue + "," + pl_list + 
"," + np_list + "," + depth_list + "," + simGOString + "," + sim); 
writer.AutoFlush = true; 
file1Line = reader.ReadLine(); 
 
    } 
    writer.Close(); 
    reader.Close(); 
} 
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APPENDIX B: SAMPLE OUTPUT AND RESULT TABLES 

Here we show some parts of the output generated from by PathLengthCalculator 

application. All the results can not be shown in here. This is only a small part of it. The 

output of the program contains the name of the genes that are compared with each other. 

PL_List contains the plain path length between the GO terms associated with a given 

gene pair. NP_List contains the number of minimum paths between the GO terms. 

Depth_List contains the depth of the least common ancestor (LCA) of the two terms. If 

there are more than 1 term related to one gene in a gene pair then we have several PLs in 

our PL_List, several NPs in our NP_List and several depths in our Depth_List that are 

separated by a “slash”.  

The following output is for Human-Yeast-IO dataset:  
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Table 0.1. Human-Yeast-IO dataset 
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The following output is for SGD HSS dataset: 

 

 

Table 0.2. SGD HSS dataset 
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The following output is for FlyBase NSS dataset: 

 

 

Table 0.3. FlyBase NSS dataset 
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