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Abstract 
 

Group Multicast is becoming a prevalent issue in 
Network applications such as teleconferencing, pay-
per-view, and information services. In order to secure 
group communications by providing confidentiality 
and trustworthiness of messages, various methods 
were  proposed in the literature. In this paper, we 
compare some of these methods.  In particular, we 
consider the exclusive basis systems, and the batch re-
keying methods. We also simulate the process of sub-
group eviction for Exclusion Basis System (EBS) and 
we compare the work that needs to be done in a group-
join  and a group-eviction both in EBS and in Batch 
re-keying process.  The comparisons of EBS with 
algorithms for Batch Re-keying process show that for 
group eviction Batch process is more efficient while 
EBS is for group join. 

 
Keywords: group-eviction, group-join, batch re-
keying process, Exclusion Basis Systems (EBS) 
 
1. Introduction 
 
    Group Multicast has been used in many applications 
like pay-per-view services and secure teleconferencing. 
The goal is to make multicasting as secure and efficient 
as possible. Membership fluctuations need to be dealt 
with in an efficient way. That is, eviction/join of the 
users from/to the group. In the eviction process, we use 
a technique to change the keys that are known by the 
evicted user and send the new keys to the ones who are 
using those keys and are still group members. In the 
join process, we add users to the multicast group to be 
able to send them messages that are supposed to be 
sent to the group members. Let n be the number of 
people evicted from the group.  We refer to this sub-
group as the evicted sub-group. We could consider a 
group as a set of individuals. That is, send a message to 
each member of the group one by one. Since the 
unicast communication is technically well understood, 
we can use it in a group communication which is a 

brand-new area of study. Such an extension is not 
scalable to large groups. [3] 
In the unicast method, we have a client and a server 
that use an authentication protocol to communicate 
with each other. A symmetric key is created and shared 
by them to be used for pair wise secure 
communications. This procedure is extended to a group 
as follows. The group information is given to a trusted 
group server which manages the group access control. 
When a client wants to join the group, the client and 
group server mutually authenticate using an 
authentication protocol. After the authentication and 
acceptance into the group, each member shares with 
the group server a key, to be called the member’s 
individual key.  
For group communications, the group server 
distributes to each member a group key to be shared by 
all members of the group. For a group of n members, 
distributing the group key securely to all members 
requires n messages encrypted with individual keys (a 
computation cost proportional to group size n). Each 
such message may be sent separately via unicast. 
Alternatively, the n messages may be sent as a 
combined message to all group members via multicast. 
Either way, there is a communication cost proportional 
to group size n (measured in terms of the number of 
messages or the size of the combined message). 
Consider a group server that creates a new group key 
after every join and eviction. After a join, the new 
group key can be sent via unicast to the new member 
(encrypted with its individual key) and via multicast to 
existing group members (encrypted with the previous 
group key). Thus, changing the group key securely 
after a join is not too much work. 

After an eviction, however, the previous group key can 
no longer be used and the new group key must be 
encrypted for each remaining group member using its 
individual key. Thus, we see that changing the group 
key securely after an eviction incurs computation and 
communication costs proportional to n, the same as 
initial group key distribution. That is, large groups 
whose members join and leave frequently pose a 
scalability problem. [3] 
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In section 2, we introduce the previous work done for 
group multicast. 

 
2. Previous work 
 
2.1. Tree Structure 
 
    To implement secure multicast transmissions using 
encryption, each group member needs to know the 
session key which is the main key of the whole group. 
This session key is used by the multicast host to 
encrypt data packets before transmitting it to the whole 
group. For the privacy of the group, when a member is 
evicted from the group, the session key known by this 
member should be changed to a new value, disabling 
the evicted user to decrypt the messages that are sent to 
the group members. This new value of the session key 
should be sent to the members in a way that all of them 
except the evicted one could decrypt it. 
If we have a group with a simple format of one session 
key and several personal keys for each user, we should 
send n-1 messages for a group of n members to 
transmit the new value of session key to other 
members. We call this message a Re-Keying message.  
For example if user u3 is evicted from the group (see 
figure 1), the session key of k123 should be changed 
to a new value, say k12. In this method, each member 
keeps only two keys: a session key and a personal key. 
 

 
Figure 1 A group with 3 members and one session 

key [3] 
 
In a hierarchical structure like a tree, we have some 
auxiliary keys, which divide a group into several 
subgroups. We call these auxiliary keys as 
Administrative keys. The administrative keys are used 
only for rekeying operations that take place when 
group membership changes [1]. This structure would 
work as follows:  

 
Figure 2 Tree structure for multicasting [3] 

 
Each user keeps his/her personal key and all the 
auxiliary keys to the root. For example u1 knows these 
keys: k1, k123, k1-8. Therefore, when u1 is evicted, these 
keys should be changed and the new values should be 
multicast to all other group members. For n users, with 
a tree of degree k we need only (k-1)logkn  re-keying 
messages and each user should keep logkn keys, which 
equals to the height of the tree.  The standard tree that 
is used here is binary tree. 
 
2.2. Exclusion Basis System  
 
    A more general scenario of the binary tree structure 
discussed above is the Exclusion Basis System (EBS) 
in which the total number of keys that should be 
maintained by each user is smaller than the binary tree 
structure and the number of the rekeying messages can 
be half of the one in the binary tree.  Morales et al. [1] 
define EBS as follows. 
Definition. Let n, k and m be positive integers, such 
that 1<k, m<n. An Exclusion Basis System of 
dimension (n,k,m), denoted by EBS(n,k,m) is a 
collection Γ of subsets of [1,n] = {1,2,...,n} such that 
for every integer t∈[1,n] the following two properties 
hold: 
(a) t is in at most k subsets in Γ, and  
(b) There are exactly m subsets, say A1, A2,..., Am , in 

Γ such that ∪
m

i

Ai
1=

 is [1,n] - {t}. (That is, each element 

t is excluded by a union of exactly m subsets in Γ.) 
To illustrate this, we describe EBS (6,2,2).  The 
collection of subsets Γ={A1={1,2,4}, A2={1,3,5}, 
A3={2,3,6}, A4={4,5,6} }.  In this simple example, we 
can easily verify that each integer t in the interval [1,6] 
is in exactly two subsets of Γ, and each integer t is 
excluded by a union of exactly 2 subsets in Γ. We 
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borrow the second example and its illustration from 
[1].   
In EBS(8,3,2) the collection of subsets is 
     Γ={A1={5,6,7,8},A2={2,3,4,8},A3={1,3,4,6,7}, 
A4={1,2,4,5,7},A5={1,2,3,5,6,8}}.  
One can easily verify that each integer t∈  [1,8] is in 
exactly 3 subsets in Γ, and each integer t is excluded by 
a union of exactly 2 subsets in Γ, as illustrated below: 
[1,8] - {1} = A1 ∪ A2 , 
[1,8] - {2} = A1 ∪ A3 , 
[1,8] - {3} = A1 ∪ A4 , 
[1,8] - {4} = A1 ∪ A5 , 
[1,8] - {5} = A2 ∪ A3 , 
[1,8] - {6} = A2 ∪ A4 , 
[1,8] - {7} = A2 ∪ A5 , and 
[1,8] - {8} = A3 ∪ A4 . 
An Exclusion Basis System Γ of dimension (n,k,m) 
represents a situation in a secure group where there are 
n users numbered 1 through n, and where a key server 
holds a distinct key for each subset in Γ. [1]. Here the 
terms “key” and “subset” have the same concepts. We 
can map  m to the number of rekeying messages and k 
to the number of keys that is maintained by each user. 
If the subset Ai is in Γ, then the key Ai is known by 
each of the users whose number appears in the subset 
Ai. (For example, in the EBS(8,3,2) instance above, 
key A1 is known by users 5, 6, 7, and 8 and by no 
others.) 
Furthermore, for each t∈  [1,n] there are m sets in Γ 
whose union is [1,n] - {t}. From this it follows, as we 
shall see, that the key server can evict any user t, rekey, 
and let all remaining users know the replacement keys 
for the k keys they are entitled to know including the 
session key, by multicasting m messages encrypted by 
the keys corresponding to the m sets whose union is 
[1,n] - {t}. 
To illustrate, consider the case when user 1 is ejected 
in the example EBS(8,3,2) above.  User 1 knows keys 
A3, A4, and A5, so these keys need to be changed and 
the new values sent out to authorized users. Observe 
that [1,8]-{1} = A1 ∪ A2, so we show that two 
messages, encrypted by keys A1 and A2, respectively, 
are sufficient to distribute the new keys to authorized 
users. Let the first message be one encrypted with key 
A1, and which contains four subparts.  
The four parts of the message are: 
(1) a new session key, S', 
(2) replacement key for A3 encrypted by the former A3 
key, 
(3) replacement key for A4 encrypted by the former A4 
key, 
(4) replacement key for A5 encrypted by the former A5 
key, 
In other words, the first message is represented as: 
A1( S',A3(A'3,), A4(A'4,) A5(A'5,) ), 

where Ai(x) denotes encryption of x by key Ai, and A'i 
represents the replacement key for the old key Ai. In 
this notation, the second message would be: 
A2( S',A3(A'3,), A4(A'4,) A5(A'5,) ), 
It is easily verified that these two messages allow every 
remaining user, after user 1’s departure, to learn 
exactly the set of new keys to which he is entitled. 
Furthermore, user 1 cannot decipher the rekey 
messages since user 1 does not possess keys A1 and 
A2. At the conclusion of the rekey operation, user 1 
has been effectively excluded from the secure group. 
The general case for an arbitrary EBS(n,k,m) is done in 
an analogous fashion. That is, for A1, A2, ..., Am in Γ 

such that ∪
m

i

Ai
1=

 is [1,n] - {t}, the key server can evict 

user t by rekeying, and sending out m messages, such 
that the ith message is encrypted with key Ai and 
contains the new session key and new administrative 
keys encrypted by their predecessors to limit their 
decipherability to appropriate users only. [1] 
There is always a trade off between the number of 
rekeying messages needed to multicast and the number 
of the keys that should be remembered by each user. 
This is illustrated in Figure 3. 

 
Figure 3 Trade off between k and m [1] 

 
In [1], the authors showed that there is a positive 
solution to the EBS(n,k,m) problem if and only 








 +
k

mk
 ≥  n. 
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2.3. Algorithms for Batch Re-keying process 
 
    The basic key management algorithms described 
briefly in the previous section are efficient for handling 
individual departures or arrivals, but not for cases 
where a large number of users either arrive or depart at 
the same time. In such cases, when k users arrive or 
depart simultaneously, the total number of multicast 
messages needed for re-keying would be k times the 
number of re-key messages for each individual. If k 
were, say, half of the total number of users, then O(n 
log n) messages would be sent. This is clearly 
inefficient, as a key management system could ignore 
the benefits offered by the tree and instead simply re-
key through unicasting to each member. This would 
take O(n) messages. [2] 
Here we define how the batch processing works to give 
us better solutions than the previous methods for large 
number of departures and arrivals. 
Consider G as set of administrative keys known by 
user g which is supposed to be evicted from the group.  
Avoidance set A(G) for a subset G of users is defined 
as the set of nodes in a binary tree T which: 
(1) for every user g not in G,  includes at least one 
node on the path from g to the root of T, and 
(2) for every user g in G,   does not contain any node 
on the path from g to the root of T. 
The basic idea is that, if G is a set of departing users, 
then the key manager needs to use administrative keys 
for encryption that are not known by any user in G and 
are such that every user not in G can decrypt one of the 
messages in order to learn the new replacement keys. 
That is, the keys corresponding to the set A(G) is a set 
of keys not known to the users in G, and these keys can 
be used to communicate to all remaining users. 
We are interested in minimum size avoidance sets 
A(G) for a given subset G. 

 
Figure 4 

For the set of departing users{0,1,2}, a minimum 
size avoidance set A(G) is {011, 1}[2] 

 

For example, in Figure 5 a binary tree T is shown with 
eight users. If G={user 0, user 1, user 2}, then the 
minimum size avoidance set A(G) consists of the 
nodes 011 and 1. That is, the keys corresponding to 
nodes 011 and 1 in T can be used to encode re-key 
messages which let all users, except those in G, know 
the new keys they need to know in order to continue. 
Furthermore, the two messages would contain all keys 
from 011 to the root (not including 011), and all keys 
from 1 to the root (not including 1). Specifically, the 
messages would be E011(<01>||<0>||< λ >) and 
E1(< λ >), where <x> denotes a new key to replace x 
and Ey(z) denotes a message z encrypted by a key y, 
and λ  represents the root of the tree.  
A recursive algorithm called AVOIDANCE_SET is 
proposed in [2]. It computes the minimum A(G) for 
any logical tree structure T and set of departing users 
G. The algorithm AVOIDANCE_SET(T,x) has two 
arguments: the first one, T, is the logical tree for the 
secure multicast group and the second one, x, is a node 
in the tree T. To compute A(G) for the tree T and the 
set of users G, one calls the algorithm initially for x = 
Ω, i.e. the root of the tree. 
 
AVOIDANCE_SET(T,x) 
if x is a leaf and is in G then stop 
else Begin 
if the subtree of T with root x has a 
leaf that is in G 
then Begin 
AVOIDANCE_SET(T,left child(x)); 
AVOIDANCE_SET(T,right child(x)) 
End; 
else Add x to the set A(G) and stop 
End; 
 
This algorithm works in time linear in the number of 
nodes in the tree and hence it is also linear in the 
number of leaves, which is the number of users in the 
secure multicast group. It also computes the minimum 
size avoidance set A(G).   [2] 
In [2], the authors showed  that the avoidance set A(G) 
consists of at most n/2 nodes.  They also proved that 
there is a set G of users for which A(G) must contain 
n/2 users. 
The Huffman code is used in [2] to create a new 
balanced, binary tree for key maintenance of n users in 
which a server sends a total of 2n-2 messages, and 
where each message contains a single key. 
The algorithm NEW_TREE is described 
below: 
 
 
NEW_TREE(Ω) 
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begin 
n  | Ω |; 
for i 1 to n-1 do 
begin 
allocate a new node z; 
left(z) x Extract-MIN(Ω); 
right(z) y Extract-MIN(Ω); 
height(z) 1+max(height(x),height(y)) 
Insert(Ω,z) 
end; 
end; 
 
That is, let Ω be the collection of all sub trees of T 
whose roots are elements of A(G). [2] 
 
3. Simulating EBS 
 
    We represent the process of EBS systems as a 
matrix. [1]  The columns of the matrix represent the 
users and the rows represent the keys used in the whole 
system. For example if user1 knows the K3 and K4 in 
the EBS System the elements of A12  and A13  should be 
“1” and the rest (A11,A14,…,A1T) should be zero. T 
which is the sum of the number of rekeying messages 
(m) and the number of keys k  known by this user.  The 
rows of the matrix are the binary strings of length 








 +
k

mk  where each column contains exactly k “1”. 

For example, if we have an EBS System that the 
number of keys remembered by each user is  k = 2 and 
the number of re-keying messages m = 2 we would 
have the following matrix: 

 
 
The  following code computes matrix A. 
  
Public Function CreateKey(ByVal Total As 
Integer, ByVal NumOfOne As Integer) As 
ArrayList 
    Dim i As Integer = 0 
    Dim InitStr As String = "" 
    Dim myStr As String = "" 
    Dim KeysArray As ArrayList = New ArrayList 
 
    For i=0 To Total-1 
     InitStr = String.Concat("0", InitStr) 
    Next 
 
    myStr = InitStr 
If KeysArray.Count < Math.Pow(2, Total) - 2 
Then 
   While NumberOfOne(myStr) < myStr.Length 
         myStr = increase(myStr) 

         If NumberOfOne(myStr) = NumOfOne Then 
            KeysArray.Add(myStr) 
          End If 
    End While 
End If 
     Return KeysArray 
End Function 
  
This code starts from the initial string as an example: 
“0000” and counts to “1111”. It increases each string 
value one by one and counts the number of ones for 
each string. If the number of ones in the string is k, 
then it adds it to the desired Array List.  We use this 
ArrayList to create the matrix. 
Finally, we have an array of strings that represent 
different permutations of ones in k+m positions. By 
this method the array would be produced faster and 
takes less memory than using standard permutation 
generation algorithms. The order would be O(n) in this 
method while the order would be O(n2) since it should 
use the factorial in each computation. When a user is 
evicted from the group, all other members who share 
some common keys with the evicted user should be 
informed about the new value of the changed keys. 
This could be done by the following algorithm: 
 
For Each column in A Matrix belongs to Evicted 
User 

j = index of row which the value of 
the matrix is one 
For i=0 to Permutation (m+k, k)-1(The 
number of all users) 

        If Aij =“1” 
          Add the user to the ToBeInformedList 
 Next 
 

In the above pseudo code the keys that are known by 
the evicted user should be changed. So, users that knew 
the keys should be informed of the value of the new 
keys. We can do that by a horizontal scan of the 
matrix. In each row the entries set to 1 represent the 
users that know the same keys. So we add them to a 
list called “ToBeInformedList”. 
As an example, suppose user1 and user2 of the matrix 
above should be evicted from the group. 
Keys k3 and k4 that are known by user1 and hence, 
should be changed.  A quick glimpse at rows k3 and k4 
shows which users were using k3 and k4. In row k3, 
user3 and user5 are using this key (since they have 1 
value) and in row k4, user2 and user4 are using this 
key. Therefore, if user1 and user2 are evicted from the 
group, user3, user5, and user4 should be informed of 
the new value of the changed keys. 
 
4. Comparing the two methods 
 
    In group evictions, using EBS systems are not 
efficient and we would better use the algorithms for 
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batch re-keying. As an example, consider a tree in 
batch re-keying algorithm, with the height of 7 that can 
give service to 128 users. Each user  would know 7 
keys so  we have k = 7. suppose that a group of 20 
users should be evicted from the group. The number of 
re-keying message would be 2*A(G)-2 as stated 
before. A(G) would be at most n/2 as proved in[2].   
2*n/2-2 = 126 would be the number of reeking 
messages. In EBS(10,7,3) which can serve 









7
10 = 120 

users, each user would send 3 re-keying messages. The 
number of re-keying message would be m*n’*k, where 
n’ is the number of evicted users (3*20*7=420). 
On the other hand for group addition, if we want to add 
users to EBS system, it can be implemented by the 
following algorithm. 
 

//Make different permutations of k 
“1” in m+k positions. 

If the number_of_users > 






 +
k

km
  

 then ExtendMatrix 
 
ExtendMatrix: 
//Adds 0 to all other keys created 
before  
T = m+k 
while m <> 1 

CreateKey(T,m-1)   //makes  new 
     series of the keys  
m = m-1 

   end while 
 
So, it would be much more efficient and simpler than 
using algorithms for batch re-keying process. Since 
after each extend part we need to add to the height of 
our tree since the parent node of each user should be 
changed. 
 
5. Conclusion 
 
    We compared two different methods for group 
multicasting. The simplest solution to group 
multicasting is to consider the group as a set of 
individuals.  The problem with this approach is that it 
is not scalable. The total number of administrative keys 
in the best EBS (n,k,m) system is the logarithm of the 
number needed for binary tree-based systems.  Hence, 
we conclude that EBS system is much more efficient 
than binary trees. Furthermore, the number of needed 
re-keying messages in EBS(n,k,m) system , when a 
user is evicted is also, in general, smaller than required 
in a binary tree-based system. 

The comparisons of  EBS with algorithms for Batch 
Re-keying process shows that for group eviction Batch 
process is more efficient while for group join EBS is. 
We also proposed two algorithms. A simple and more 
efficient way of constructing the matrix and one for 
creating a matrix in EBS while extended join occurs. 
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