
Efficient Algorithms for Secure Multicast key Management

Elham Khabiri , Saïd Bettayeb
School of Science and Computer Engineering

University of Houston-Clear Lake
elhamrose@yahoo.com, bettayeb@uhcl.edu

Abstract

Group Multicast is becoming a prevalent issue in
Network applications such as teleconferencing, pay-
per-view, and information services. In order to secure
group communications by providing confidentiality
and trustworthiness of messages, various methods
were proposed in the literature. In this paper, we
compare some of these methods. In particular, we
consider the exclusive basis systems, and the batch re-
keying methods. We also simulate the process of sub-
group eviction for Exclusion Basis System (EBS) and
we compare the work that needs to be done in a group-
join and a group-eviction both in EBS and in Batch
re-keying process. The comparisons of EBS with
algorithms for Batch Re-keying process show that for
group eviction Batch process is more efficient while
EBS is for group join.

Keywords: group-eviction, group-join, batch re-
keying process, Exclusion Basis Systems (EBS)

1. Introduction

 Group Multicast has been used in many applications
like pay-per-view services and secure teleconferencing.
The goal is to make multicasting as secure and efficient
as possible. Membership fluctuations need to be dealt
with in an efficient way. That is, eviction/join of the
users from/to the group. In the eviction process, we use
a technique to change the keys that are known by the
evicted user and send the new keys to the ones who are
using those keys and are still group members. In the
join process, we add users to the multicast group to be
able to send them messages that are supposed to be
sent to the group members. Let n be the number of
people evicted from the group. We refer to this sub-
group as the evicted sub-group. We could consider a
group as a set of individuals. That is, send a message to
each member of the group one by one. Since the
unicast communication is technically well understood,
we can use it in a group communication which is a

brand-new area of study. Such an extension is not
scalable to large groups. [3]
In the unicast method, we have a client and a server
that use an authentication protocol to communicate
with each other. A symmetric key is created and shared
by them to be used for pair wise secure
communications. This procedure is extended to a group
as follows. The group information is given to a trusted
group server which manages the group access control.
When a client wants to join the group, the client and
group server mutually authenticate using an
authentication protocol. After the authentication and
acceptance into the group, each member shares with
the group server a key, to be called the member’s
individual key.
For group communications, the group server
distributes to each member a group key to be shared by
all members of the group. For a group of n members,
distributing the group key securely to all members
requires n messages encrypted with individual keys (a
computation cost proportional to group size n). Each
such message may be sent separately via unicast.
Alternatively, the n messages may be sent as a
combined message to all group members via multicast.
Either way, there is a communication cost proportional
to group size n (measured in terms of the number of
messages or the size of the combined message).
Consider a group server that creates a new group key
after every join and eviction. After a join, the new
group key can be sent via unicast to the new member
(encrypted with its individual key) and via multicast to
existing group members (encrypted with the previous
group key). Thus, changing the group key securely
after a join is not too much work.

After an eviction, however, the previous group key can
no longer be used and the new group key must be
encrypted for each remaining group member using its
individual key. Thus, we see that changing the group
key securely after an eviction incurs computation and
communication costs proportional to n, the same as
initial group key distribution. That is, large groups
whose members join and leave frequently pose a
scalability problem. [3]

7871-4244-0419-3/06/$20.00 ©2006 IEEE

In section 2, we introduce the previous work done for
group multicast.

2. Previous work

2.1. Tree Structure

 To implement secure multicast transmissions using
encryption, each group member needs to know the
session key which is the main key of the whole group.
This session key is used by the multicast host to
encrypt data packets before transmitting it to the whole
group. For the privacy of the group, when a member is
evicted from the group, the session key known by this
member should be changed to a new value, disabling
the evicted user to decrypt the messages that are sent to
the group members. This new value of the session key
should be sent to the members in a way that all of them
except the evicted one could decrypt it.
If we have a group with a simple format of one session
key and several personal keys for each user, we should
send n-1 messages for a group of n members to
transmit the new value of session key to other
members. We call this message a Re-Keying message.
For example if user u3 is evicted from the group (see
figure 1), the session key of k123 should be changed
to a new value, say k12. In this method, each member
keeps only two keys: a session key and a personal key.

Figure 1 A group with 3 members and one session

key [3]

In a hierarchical structure like a tree, we have some
auxiliary keys, which divide a group into several
subgroups. We call these auxiliary keys as
Administrative keys. The administrative keys are used
only for rekeying operations that take place when
group membership changes [1]. This structure would
work as follows:

Figure 2 Tree structure for multicasting [3]

Each user keeps his/her personal key and all the
auxiliary keys to the root. For example u1 knows these
keys: k1, k123, k1-8. Therefore, when u1 is evicted, these
keys should be changed and the new values should be
multicast to all other group members. For n users, with
a tree of degree k we need only (k-1)logkn re-keying
messages and each user should keep logkn keys, which
equals to the height of the tree. The standard tree that
is used here is binary tree.

2.2. Exclusion Basis System

 A more general scenario of the binary tree structure
discussed above is the Exclusion Basis System (EBS)
in which the total number of keys that should be
maintained by each user is smaller than the binary tree
structure and the number of the rekeying messages can
be half of the one in the binary tree. Morales et al. [1]
define EBS as follows.
Definition. Let n, k and m be positive integers, such
that 1<k, m<n. An Exclusion Basis System of
dimension (n,k,m), denoted by EBS(n,k,m) is a
collection Γ of subsets of [1,n] = {1,2,...,n} such that
for every integer t∈[1,n] the following two properties
hold:
(a) t is in at most k subsets in Γ, and
(b) There are exactly m subsets, say A1, A2,..., Am , in

Γ such that ∪
m

i

Ai
1=

 is [1,n] - {t}. (That is, each element

t is excluded by a union of exactly m subsets in Γ.)
To illustrate this, we describe EBS (6,2,2). The
collection of subsets Γ={A1={1,2,4}, A2={1,3,5},
A3={2,3,6}, A4={4,5,6} }. In this simple example, we
can easily verify that each integer t in the interval [1,6]
is in exactly two subsets of Γ, and each integer t is
excluded by a union of exactly 2 subsets in Γ. We

788

borrow the second example and its illustration from
[1].
In EBS(8,3,2) the collection of subsets is
 Γ={A1={5,6,7,8},A2={2,3,4,8},A3={1,3,4,6,7},
A4={1,2,4,5,7},A5={1,2,3,5,6,8}}.
One can easily verify that each integer t∈ [1,8] is in
exactly 3 subsets in Γ, and each integer t is excluded by
a union of exactly 2 subsets in Γ, as illustrated below:
[1,8] - {1} = A1 ∪ A2 ,
[1,8] - {2} = A1 ∪ A3 ,
[1,8] - {3} = A1 ∪ A4 ,
[1,8] - {4} = A1 ∪ A5 ,
[1,8] - {5} = A2 ∪ A3 ,
[1,8] - {6} = A2 ∪ A4 ,
[1,8] - {7} = A2 ∪ A5 , and
[1,8] - {8} = A3 ∪ A4 .
An Exclusion Basis System Γ of dimension (n,k,m)
represents a situation in a secure group where there are
n users numbered 1 through n, and where a key server
holds a distinct key for each subset in Γ. [1]. Here the
terms “key” and “subset” have the same concepts. We
can map m to the number of rekeying messages and k
to the number of keys that is maintained by each user.
If the subset Ai is in Γ, then the key Ai is known by
each of the users whose number appears in the subset
Ai. (For example, in the EBS(8,3,2) instance above,
key A1 is known by users 5, 6, 7, and 8 and by no
others.)
Furthermore, for each t∈ [1,n] there are m sets in Γ
whose union is [1,n] - {t}. From this it follows, as we
shall see, that the key server can evict any user t, rekey,
and let all remaining users know the replacement keys
for the k keys they are entitled to know including the
session key, by multicasting m messages encrypted by
the keys corresponding to the m sets whose union is
[1,n] - {t}.
To illustrate, consider the case when user 1 is ejected
in the example EBS(8,3,2) above. User 1 knows keys
A3, A4, and A5, so these keys need to be changed and
the new values sent out to authorized users. Observe
that [1,8]-{1} = A1 ∪ A2, so we show that two
messages, encrypted by keys A1 and A2, respectively,
are sufficient to distribute the new keys to authorized
users. Let the first message be one encrypted with key
A1, and which contains four subparts.
The four parts of the message are:
(1) a new session key, S',
(2) replacement key for A3 encrypted by the former A3
key,
(3) replacement key for A4 encrypted by the former A4
key,
(4) replacement key for A5 encrypted by the former A5
key,
In other words, the first message is represented as:
A1(S',A3(A'3,), A4(A'4,) A5(A'5,)),

where Ai(x) denotes encryption of x by key Ai, and A'i
represents the replacement key for the old key Ai. In
this notation, the second message would be:
A2(S',A3(A'3,), A4(A'4,) A5(A'5,)),
It is easily verified that these two messages allow every
remaining user, after user 1’s departure, to learn
exactly the set of new keys to which he is entitled.
Furthermore, user 1 cannot decipher the rekey
messages since user 1 does not possess keys A1 and
A2. At the conclusion of the rekey operation, user 1
has been effectively excluded from the secure group.
The general case for an arbitrary EBS(n,k,m) is done in
an analogous fashion. That is, for A1, A2, ..., Am in Γ

such that ∪
m

i

Ai
1=

 is [1,n] - {t}, the key server can evict

user t by rekeying, and sending out m messages, such
that the ith message is encrypted with key Ai and
contains the new session key and new administrative
keys encrypted by their predecessors to limit their
decipherability to appropriate users only. [1]
There is always a trade off between the number of
rekeying messages needed to multicast and the number
of the keys that should be remembered by each user.
This is illustrated in Figure 3.

Figure 3 Trade off between k and m [1]

In [1], the authors showed that there is a positive
solution to the EBS(n,k,m) problem if and only








 +
k

mk
 ≥ n.

789

2.3. Algorithms for Batch Re-keying process

 The basic key management algorithms described
briefly in the previous section are efficient for handling
individual departures or arrivals, but not for cases
where a large number of users either arrive or depart at
the same time. In such cases, when k users arrive or
depart simultaneously, the total number of multicast
messages needed for re-keying would be k times the
number of re-key messages for each individual. If k
were, say, half of the total number of users, then O(n
log n) messages would be sent. This is clearly
inefficient, as a key management system could ignore
the benefits offered by the tree and instead simply re-
key through unicasting to each member. This would
take O(n) messages. [2]
Here we define how the batch processing works to give
us better solutions than the previous methods for large
number of departures and arrivals.
Consider G as set of administrative keys known by
user g which is supposed to be evicted from the group.
Avoidance set A(G) for a subset G of users is defined
as the set of nodes in a binary tree T which:
(1) for every user g not in G, includes at least one
node on the path from g to the root of T, and
(2) for every user g in G, does not contain any node
on the path from g to the root of T.
The basic idea is that, if G is a set of departing users,
then the key manager needs to use administrative keys
for encryption that are not known by any user in G and
are such that every user not in G can decrypt one of the
messages in order to learn the new replacement keys.
That is, the keys corresponding to the set A(G) is a set
of keys not known to the users in G, and these keys can
be used to communicate to all remaining users.
We are interested in minimum size avoidance sets
A(G) for a given subset G.

Figure 4

For the set of departing users{0,1,2}, a minimum
size avoidance set A(G) is {011, 1}[2]

For example, in Figure 5 a binary tree T is shown with
eight users. If G={user 0, user 1, user 2}, then the
minimum size avoidance set A(G) consists of the
nodes 011 and 1. That is, the keys corresponding to
nodes 011 and 1 in T can be used to encode re-key
messages which let all users, except those in G, know
the new keys they need to know in order to continue.
Furthermore, the two messages would contain all keys
from 011 to the root (not including 011), and all keys
from 1 to the root (not including 1). Specifically, the
messages would be E011(<01>||<0>||< λ >) and
E1(< λ >), where <x> denotes a new key to replace x
and Ey(z) denotes a message z encrypted by a key y,
and λ represents the root of the tree.
A recursive algorithm called AVOIDANCE_SET is
proposed in [2]. It computes the minimum A(G) for
any logical tree structure T and set of departing users
G. The algorithm AVOIDANCE_SET(T,x) has two
arguments: the first one, T, is the logical tree for the
secure multicast group and the second one, x, is a node
in the tree T. To compute A(G) for the tree T and the
set of users G, one calls the algorithm initially for x =
Ω, i.e. the root of the tree.

AVOIDANCE_SET(T,x)
if x is a leaf and is in G then stop
else Begin
if the subtree of T with root x has a
leaf that is in G
then Begin
AVOIDANCE_SET(T,left child(x));
AVOIDANCE_SET(T,right child(x))
End;
else Add x to the set A(G) and stop
End;

This algorithm works in time linear in the number of
nodes in the tree and hence it is also linear in the
number of leaves, which is the number of users in the
secure multicast group. It also computes the minimum
size avoidance set A(G). [2]
In [2], the authors showed that the avoidance set A(G)
consists of at most n/2 nodes. They also proved that
there is a set G of users for which A(G) must contain
n/2 users.
The Huffman code is used in [2] to create a new
balanced, binary tree for key maintenance of n users in
which a server sends a total of 2n-2 messages, and
where each message contains a single key.
The algorithm NEW_TREE is described
below:

NEW_TREE(Ω)

790

begin
n | Ω |;
for i 1 to n-1 do
begin
allocate a new node z;
left(z) x Extract-MIN(Ω);
right(z) y Extract-MIN(Ω);
height(z) 1+max(height(x),height(y))
Insert(Ω,z)
end;
end;

That is, let Ω be the collection of all sub trees of T
whose roots are elements of A(G). [2]

3. Simulating EBS

 We represent the process of EBS systems as a
matrix. [1] The columns of the matrix represent the
users and the rows represent the keys used in the whole
system. For example if user1 knows the K3 and K4 in
the EBS System the elements of A12 and A13 should be
“1” and the rest (A11,A14,…,A1T) should be zero. T
which is the sum of the number of rekeying messages
(m) and the number of keys k known by this user. The
rows of the matrix are the binary strings of length








 +
k

mk where each column contains exactly k “1”.

For example, if we have an EBS System that the
number of keys remembered by each user is k = 2 and
the number of re-keying messages m = 2 we would
have the following matrix:

The following code computes matrix A.

Public Function CreateKey(ByVal Total As
Integer, ByVal NumOfOne As Integer) As
ArrayList
 Dim i As Integer = 0
 Dim InitStr As String = ""
 Dim myStr As String = ""
 Dim KeysArray As ArrayList = New ArrayList

 For i=0 To Total-1
 InitStr = String.Concat("0", InitStr)
 Next

 myStr = InitStr
If KeysArray.Count < Math.Pow(2, Total) - 2
Then
 While NumberOfOne(myStr) < myStr.Length
 myStr = increase(myStr)

 If NumberOfOne(myStr) = NumOfOne Then
 KeysArray.Add(myStr)
 End If
 End While
End If
 Return KeysArray
End Function

This code starts from the initial string as an example:
“0000” and counts to “1111”. It increases each string
value one by one and counts the number of ones for
each string. If the number of ones in the string is k,
then it adds it to the desired Array List. We use this
ArrayList to create the matrix.
Finally, we have an array of strings that represent
different permutations of ones in k+m positions. By
this method the array would be produced faster and
takes less memory than using standard permutation
generation algorithms. The order would be O(n) in this
method while the order would be O(n2) since it should
use the factorial in each computation. When a user is
evicted from the group, all other members who share
some common keys with the evicted user should be
informed about the new value of the changed keys.
This could be done by the following algorithm:

For Each column in A Matrix belongs to Evicted
User

j = index of row which the value of
the matrix is one
For i=0 to Permutation (m+k, k)-1(The
number of all users)

 If Aij =“1”
 Add the user to the ToBeInformedList
 Next

In the above pseudo code the keys that are known by
the evicted user should be changed. So, users that knew
the keys should be informed of the value of the new
keys. We can do that by a horizontal scan of the
matrix. In each row the entries set to 1 represent the
users that know the same keys. So we add them to a
list called “ToBeInformedList”.
As an example, suppose user1 and user2 of the matrix
above should be evicted from the group.
Keys k3 and k4 that are known by user1 and hence,
should be changed. A quick glimpse at rows k3 and k4
shows which users were using k3 and k4. In row k3,
user3 and user5 are using this key (since they have 1
value) and in row k4, user2 and user4 are using this
key. Therefore, if user1 and user2 are evicted from the
group, user3, user5, and user4 should be informed of
the new value of the changed keys.

4. Comparing the two methods

 In group evictions, using EBS systems are not
efficient and we would better use the algorithms for

791

batch re-keying. As an example, consider a tree in
batch re-keying algorithm, with the height of 7 that can
give service to 128 users. Each user would know 7
keys so we have k = 7. suppose that a group of 20
users should be evicted from the group. The number of
re-keying message would be 2*A(G)-2 as stated
before. A(G) would be at most n/2 as proved in[2].
2*n/2-2 = 126 would be the number of reeking
messages. In EBS(10,7,3) which can serve









7
10 = 120

users, each user would send 3 re-keying messages. The
number of re-keying message would be m*n’*k, where
n’ is the number of evicted users (3*20*7=420).
On the other hand for group addition, if we want to add
users to EBS system, it can be implemented by the
following algorithm.

//Make different permutations of k
“1” in m+k positions.

If the number_of_users > 






 +
k

km

 then ExtendMatrix

ExtendMatrix:
//Adds 0 to all other keys created
before
T = m+k
while m <> 1

CreateKey(T,m-1) //makes new
 series of the keys
m = m-1

 end while

So, it would be much more efficient and simpler than
using algorithms for batch re-keying process. Since
after each extend part we need to add to the height of
our tree since the parent node of each user should be
changed.

5. Conclusion

 We compared two different methods for group
multicasting. The simplest solution to group
multicasting is to consider the group as a set of
individuals. The problem with this approach is that it
is not scalable. The total number of administrative keys
in the best EBS (n,k,m) system is the logarithm of the
number needed for binary tree-based systems. Hence,
we conclude that EBS system is much more efficient
than binary trees. Furthermore, the number of needed
re-keying messages in EBS(n,k,m) system , when a
user is evicted is also, in general, smaller than required
in a binary tree-based system.

The comparisons of EBS with algorithms for Batch
Re-keying process shows that for group eviction Batch
process is more efficient while for group join EBS is.
We also proposed two algorithms. A simple and more
efficient way of constructing the matrix and one for
creating a matrix in EBS while extended join occurs.

6. References

[1] L. Morales, I. H. Sudborough, M. Eltoweissy, and
M. H. Heydari, "Combinatorial Optimization of
Multicast Key Management," Proceedings of the 36th
Hawaii International Conference on System Sciences,
2003.
[2] M. H. Heydari, L. Morales, and I. H. Sudborough,
"Efficient Algorithms for Batch Re-keying Operations
in Secure Multicast," Proceedings of the 39th Hawaii
International Conference on System Sciences, 2006.
[3] Chung Kei Wong, Mohamed Gouda and Simon
S.Lam, "Secure Group Communications Using Key
Graphs" presented at ACM SICCOMM, Vancouver,
B.C., 1998.

792

