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Abstract 
The size and volumes of genomic data resulting from the 
various genome projects are extremely huge and 
increasing in very high rates. Finding gene groups with 
similar functions is one of the most important tasks in 
bioinformatics. In this paper, we present a novel 
technique for estimating gene functional similarity using 
Gene Ontology (GO) annotations.  GO is considered the 
most comprehensive resource for functional gene 
annotation.  The proposed method is an ontology-
structure-based method and relies only on path length 
(PL) between GO nodes. We evaluated the method based 
on the correlation between PL and gene sequence 
similarity using Blast e-values.  We conducted 
experiments with two genome annotation databases: 
SGD and Flybase using molecular function (MF) terms. 
The experimental results proved that the method has 
fairly impressive agreement with Blast sequence 
similarity.  Furthermore, the evaluations showed that PL 
can be used as a tool for determining the genes with 
similar functions within a genome.  
 
 

1. Introduction  
Computing the functional similarity between genes 
is an important and necessary task in 
bioinformatics. Comparing similarities between 
genes with known molecular functions with those 
with unknown ones would reveal the functions of 
the unknown genes to certain accuracy 
[2].Although the sequence similarity, in general, 
holds for most genes and proteins with the same 
molecular function, there are genes that are not 
evolved from a common ancestor and therefore the 
sequence similarity between them are not 
considerable, but still they have the similar 
molecular functions.  
There are limitations on using the sequence 
similarity measures. Previous studies showed that 
up to 30% of the function annotations made through 
sequence similarity searches might be erroneous 
[17][2]. One of the greatest projects which have 
been done in this domain is Gene Ontology (GO) 
[1, 9].  GO is a controlled and structured vocabulary 
and taxonomy that is designed mainly to describe 

the molecular functions, biological process and 
cellular components of gene products independent of 
the organisms. The gene functional related terms in 
GO are presented in a controlled vocabulary format 
that makes the comparison of the genes easier. Gene 
Ontology is a Directed Acyclic Graph (DAG) in 
which terms may have multiple parents and thus, 
two nodes can have multiple different paths between 
them. 
Gene Ontology annotations capture the available 
functional information of gene products, in an 
organism, and can be used as a basis for defining a 
measure of functional similarity between gene 
products [2].  Gene annotation data is represented in 
scientific natural language which is easier to be 
modeled and is more readable to human as compared 
to other bioinformatics data that exist, for example, 
in the form of sequences. The GO project is 
collaboration between 35 model organism databases. 
Among them FlyBase (Drosophila melanogaster), 
the SGD (Saccharomyces Genome Database) and 
the Mouse Genome Database (MGD) were the first 
group of databases that started the collaboration and 
after that other databases have joined them [1].  In 
this project each gene is annotated with one or more 
terms and saved in the annotation file of the related 
organism.  
In this paper, we propose a novel method for 
measuring the functional similarity between genes 
using the GO annotations.  
The method is based on calculating the average path 
length (PL) between GO annotation terms of the 
genes. We evaluated the method with a series of 
experiments based on the correlation between PL 
and gene sequence similarity using Blast e-values. 
The experimental results proved that the method has 
fairly impressive agreement with Blast sequence 
similarity.  Furthermore, the evaluations showed that 
PL can be used as a tool for determining the genes 
with similar functions within a genome. We used in 
the evaluation two genome annotation datasets: SGD 
and Flybase [24, 33, 1, 21].  Each dataset is divided 
into a number of sequence similarity ranges based on 
the E-value in gene pairs. Then, we grouped the 
genes into genes with high sequence similarity 
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(HSS), low sequence similarity (LSS) and no 
sequence similarity (NSS) and each one of these 
three groups was tested separately.  
 

2. Related Work 
Ontology-based semantic similarity measures have 
been investigated for long time in the general 
English domain. For example, Resnik [11], Jiang 
and Conrath [12] and Lin [13] proposed 
information-content (IC) based measures for 
semantic similarity between terms and these 
measures were designed mainly for WordNet [28].  
WordNet is a freely available lexical database that 
represents an ontology of approximately 100,000 
general English concepts. These measures are 
proven to be useful in natural language processing 
(NLP) tasks [10].  Resnik’s measure calculates the 
semantic similarity between two terms [t1, t2] in 
Ontology (e.g., WordNet) as the information 
content (IC) of the least common subsumer (LCS) 
of t1, t2.  The IC of a term t can be quantified in 
terms of the likelihood (probability) of its 
occurrence p(t). The higher a term appears in the 
ontology means the lower is its information content 
because, simply, more general terms tend to occur 
more frequently in general than specialized terms.  
The probability assigned to a term is defined as its 
relative frequency of occurrence. Jiang and Conrath 
[12] proposed a different approach by combining 
the edge based measure with information content 
calculation of node based techniques. Lin [14] in 
1998 developed a measure that considered how 
close the terms are to their least common subsumer 
(LCS) in the ontology. However, it disregards the 
level of detail of the lowest common ancestor. 
In the Biomedical domain, measures of semantic 
similarity based on ontology were developed as 
early as 1989.  Reda et al. [16] proposed the first 
semantic similarity measure in the biomedical 
domain by using path length between biomedical 
terms in the MeSH ontology [29] as a measure of 
semantic similarity. Path Length (PL) can be 
calculated easily for the tree structured Ontologies 
such as WordNet. But for DAG-type ontologies, 
like Gene Ontology, path length is more 
complicated, since each node may have multiple 
parents, and thus, two nodes can have several 
different paths between them.  Several other 
biomedical ontologies, within the framework of 
UMLS (unified medical language system) [30], 
have also been used for measuring semantic 

similarity in bioinformatics. These include Snomed-
ct [31] and ICD9CM [32]. 
Lord et al. (2003) [15] were the first to apply a 
measure of semantic similarity to GO. They 
proposed a technique for calculating the semantic 
similarity of protein pairs based on Resnik's measure 
[11]. The semantic similarity between two proteins 
is defined as the average similarity of all GO terms 
with which these proteins are annotated. Each 
protein pair receives three similarity values, one for 
each Ontology (Molecular Function, Biological 
Process and Cellular Component Ontologies) [15].   
Speer et al. (2004) [19] used a distance measure 
based on Lin's similarity for clustering genes on a 
microarray according to their function.    Chang et 
al. (2001) [34] and MacCallum et al. (2000) [35] 
showed that Similarity between annotation and 
literature will augment sequence similarity searches 
[15]. They improved PSIBLAST (Altschul et al., 
1997 [26]) with similarity scores calculated over the 
annotations and Medline [27] references. Sevilla et 
al. (2005) [18] analyzed the correlation between 
gene expression and Resnik's,   Jiang and Conraths’ 
and Lin's measures of semantic similarity [18]. They 
used microarray data analysis to determine 
expression levels of genes and compare them with 
those annotated in GO. They concluded that Resnik's 
measure correlates well with gene expression.  More 
recently, Schlicker et al. (2006) [2] introduced a new 
measure of similarity between GO terms in Gene 
Ontology that is based on Lin's and Resnik's 
techniques. Their measure (simRel) takes into account 
how close terms are to their least common subsumer 
as well as how detailed the LCA is, i.e., 
distinguishes between generic and specific terms. 
This simRel score is the basis for a new measure, 
called funSim, to compute the functional relationship 
between two gene products. The score ranges from 0 
to 1. A funSim score close to one indicates high 
functional similarity whereas a score close to zero 
indicates low similarity. The distribution of the 
funSim score analyzed and compared for four 
different categories of protein pairs corresponding to 
four levels of evolutionary relationship: no sequence 
similarity (NSS), low sequence similarity (LSS), 
high sequence similarity (HSS), and orthology1 
according to Inparanoid (IO) that have more 
sequences similarity than HSS. The result is that 
almost 60% of the protein pairs in the IO dataset 
                                                 
1 Orthologs are genes in different species that originate 
from a single gene in the last common ancestor of these 
species. Such genes have often retained identical 
biological roles in the present-day organism [20]. 
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have the score above 0.8. Those proteins with the 
highest sequence similarities tend to have similar 
molecular functions. However, some protein pairs 
in the IO set have scores below 0.2, indicating no 
functional similarity. The percentage of proteins 
with high functional similarity is highest for the IO 
category, and decreases for HSS and LSS, to almost 
no protein pairs without sequence similarity (NSS). 
These results confirm that functionally related 
proteins tend to have higher sequence similarity [2]. 
Although Path length measure has been applied and 
explored with several biomedical ontologies [16, 
10] for biomedical term similarity, it has never been 
applied or investigated with the gene ontology.  All 
gene functional similarity techniques that use GO 
are, thus far, based on IC of terms or node depth 
features [2, 12, 15, 16]. 
 

3. The Proposed Methods 
Our proposed method is based on estimating the 
gene functional similarity based on calculating the 
semantic similarity between the GO terms 
annotated for genes. That is, we use the ontology 
structure (of GO) for estimating the similarity 
between pairs of genes based on their annotated 
terms. More specifically, we propose the path 
length between two terms in GO as an indicator of 
functional relatedness of the genes annotated with 
these terms. For example, suppose that two genes g1 
and g2 are annotated with the GO terms t1 and t2, 
respectively, for their molecular functions. Then, 
the shortest path length between t1 and t2, PL(t1, t2),  
in GO is a good measure of the functional similarity 
between g1 and g2.  
 
3.1 Path Length Calculation 
We developed an application for calculating the 
shortest path length between two genes (gene pair) 
based on their annotated terms. The method selects 
the gene pairs from an organism annotation file 
(e.g. SGD), then extracts the GO MF terms related 
to each gene and stores them in a link list; see 
Figure 2. Then it calculates the first common 
subsumer of the two genes. . We used the February 
2007 release of GO from the gene ontology website 
[21]. The yeast gene annotations were downloaded 
from the SGD site (Dec.2006) [33], Flybase gene 
annotations were obtained from the GO website 
(Dec.2006) [1, 21]. – For each pair of genes {g1, g2} 
in the annotation file, the terms related to each gene 
are extracted from the database. 

– The  path length between the GO terms are 
calculated from the GO DAG using edge counting. 
– For the pair of genes {g1, g2} such that g1 is 
annotated (for its MF) with the terms t1, .., tn while 
g2 is annotated with terms t1,..,tm. We calculate all 
the possible short paths between the MF terms of g1 
and g2.  Let dij be the shortest path length between 
term ti of g1 and term tj of g2. The method computes 
the average of all paths:  

avg{ dij |i:1..n, j:1..m}. 
 There were two ways for implementing our 
algorithm for calculating the shortest path length 
between two GO nodes: the mentioned algorithm: 

a. Recording all the ancestors of each node till it 
reaches to the root and then comparing all 
paths to come up to the common ancestor. 

b. Recording just the first level ancestors of each 
node and comparing them to see if they have 
anything in common or not.  

The second approach uses less memory and also 
would be done in less time compared to the first 
approach. 

 
3.2 Sequence Similarity 
We used Blast tool [23] for computing sequence 
similarity between gene pairs. The Basic Local 
Alignment Search Tool (BLAST) finds regions of 
local similarity between sequences. The program 
compares gene sequences to sequence databases and 
calculates the statistical significance of matches. 
[25] 
In some experiments, we used another tool, WU-
BLAST2 [24], to find genes having high sequence 
similarity to a given gene.  We changed the settings 
in this program so that more genes with less 
sequence similarities are shown in the result. Lower 
EXPECT thresholds in Blast settings causes more 
stringent selection that lessen the chance of 
matching sequences [25]. 
 
 
3.2.1 E-value 
The Expect value (E-value) is a parameter that 
describes the number of hits one can "expect" to see 
just by chance when searching a database of a 
particular size [25].  In the gene sequence similarity 
results from Blast, the E-value of 0 means that the 
genes are totally similar, and as the E-value 
increases the sequence similarity decreases. This 
means that the lower the E-value, or the closer to 0 
the more sequence similarity they have [25]. Bit-
score is another metric of sequence similarity that  
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Figure 1. Relationship between path length and bit 

score 
 
 
BLAST gives and that indicates how much 
alignment and sequence similarity two genes have. 
The higher the bit-score the better the alignment, 
and hence, higher sequence similarity. 
The path length between two genes is inversely 
proportional with the bit score. When the path 
length between two genes increases, their Blast bit 
score decreases; this relation is shown in Figure 1. 

 

4. Experiments and Results 
To evaluate our method, we used three datasets of 
genes extracted from SGD (Saccharomyces 
cerevisiae) and one dataset from Flybase 
(Drosophila melanogaster) [22, 34].  – Firstly, we 
wanted to explore the distribution of path length 
between gene pairs in SGD genes.  For that, 1000 
gene pairs were selected randomly from SGD. The 
distribution of path length of these randomly 
selected gene pairs are shown in Figure 2.  From 
this experiment (Figure 2) we notice that the 
majority of these gene pairs (64%) have path length 
between 3 and 7. Furthermore, 12% of these pairs 
have path length of at most 2 which indicate that 
these genes have somewhat significant semantic 
similarity (small path length) between their GO 
terms. Moreover, we found that 24% of these gene 
pairs have path length of 8 or greater which 
indicates that these pairs have no similarity in their 
GO annotation terms.  This leads to the observation 
that there is no significant pattern or relation (by 
chance) of the path length feature between these 
SGD genes. 
– Similarity we collected randomly 500 gene pairs 
from Flybase to examine the path length. The path 
length distribution is illustrated in Figure 3. Again, 
no pattern or relation exists between Flybase genes. 
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Figure 2.  Distribution of path length among 1000 

gene pairs randomly selected from SGD. 
 

Distribution of path length among FlyBase 
genes

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Path length

N
um

be
r o

f g
en

es

 
Figure 3. Distribution of path length among 500 

gene pairs randomly selected from Flybase. 
 
 

– Next, we examined our method to test the 
correlation between path length and sequence 
similarity of gene pairs. For that, we extracted three 
datasets of gene pairs from SGD: HSS, LSS, NSS. 
The high sequence similarity (HSS) gene pairs are 
those with the Blast E-value ≤10-5. The gene pairs 
with low sequence similarity (LSS) are those with 
the E-value > 10-5 but less than one. The gene pairs 
with no sequence similarity (NSS) are those with the 
E-value = 1.   Figure 4 shows a small part of the 
result for the HSS dataset. 
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Figure 4. Example from SGD gene pairs. 
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Figure 5.  Distribution of path length between 

gene pairs in Dataset 1 
 
 
Dataset 1 includes 200 gene pairs of HSS, 200 gene 
pairs of LSS, and 200 gene pairs of NSS extracted 
from SGD annotation file. Figure 5 illustrates the 
distribution of path length (x-axis) in HSS, LSS, 
and NSS sets.  More than 60% of the gene pairs in 
HSS have path length of 2 or less while only 15% 
of LSS and 4% of NSS gene pairs have the path 
length 2 or less. The number of HSS gene pairs 
decreases as the path length increases through the x 
axis. We also found that more than 40% or NSS 
gene pairs and only less than 10% of HSS pairs 
have path length of 8 or more. 
– We conducted another experiment on SGD genes 
using another dataset (Dataset2) of gene pairs 
having certain relations in their sequence similarity.  
Dataset 2 includes 139 gene pairs of HSS, 469 gene 
pairs of LSS, and 386 gene pairs of NSS extracted 
from SGD annotation. The results are illustrated in 
Figure 6.  As we can see in these experimental 
results, again there is a pattern or relation between 
path length and sequence similarity. That is, gene 
pairs with high sequence similarity (HSS) tend to 
have low path length between their GO annotation 

DataSet2 From SGD

0
10
20
30
40
50
60
70
80
90

PL<=2 2<PL<=7 PL>7

Path Length

Pe
rc

en
ta

ge HSS

LSS

NSS

 

Figure 6.  Distribution of path length between gene 
pairs in Dataset 2 from SGD 

 
 

terms (more than 80% of HSS pairs have path length 
of 2 or less) whereas genes with no sequence 
similarity (NSS) lean to have relatively higher path 
length between their GO terms. 
Next, we combined Dataset 1 and Dataset 2; we call 
it Dataset 3 which includes 339 HSS gene pairs, 669 
LSS gene pairs, and 586 NSS gene pairs. The results 
of Dataset 3 are shown in Figure 7. Again, we have 
the same trend, majority of NSS genes (93%) have 
path length of 3 or more which implies that there is 
no significant semantic similarity in their GO terms. 
On the other hand, majority of HSS genes (70%) 
have path length of 2 or less indicating semantic 
similarity in their GO annotation terms. 
– In another evaluation, we used genes from a 
different genome (Flybase) in a new dataset 
(Dataset_4) of gene pairs. Dataset 4 includes 60 
gene pairs of HSS, 60 gene pairs of NSS extracted 
from FlyBase annotation database. The results of 
path length distribution among the Flybase gene 
pairs are illustrated in Figure 8.  Almost 80% of HSS 
pairs have path length ≤ 2 while only 13% of NSS 
pairs have path length ≤ 2 which implies that there is 
a correlation between sequence similarity and path 
length in this dataset.  
In summary, our evaluation experiments involved 
more than 1700 gene pairs (more than 3400 genes) 
having high, low, or no sequence similarity from 
two different organisms. Furthermore, we tested our 
method on 1500 gene pairs (3000 genes) randomly 
selected (with no particular sequence similarity) 
from the two organisms.  All the experimental 
results on various gene groups, from two different 
genomes, support the fact that there is significant  
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Figure 7. Distribution of path length between 

gene pairs in Dataset 3. 
 
 
 
correlation between the sequence similarity of 
genes and semantic similarity using path length.    
This suggests and proves that path length between 
gene annotation terms using GO can be a good and 
reliable measure and metric for gene functional 
similarity.   
 

5. Conclusion  
Gene Ontology is considered the most 
comprehensive and reliable resource for functional 
annotations of gene products. The existing 
techniques for finding gene functional similarity 
based on GO rely mainly on IC or node depth. Path 
length feature has never been explored as a metric 
or indicator for gene functional similarities.  The 
work presented in this paper is an attempt to fill this 
gap. We presented a novel technique for finding 
gene functional similarity based on GO annotation 
terms. The method is based on the average shortest 
path length between the GO terms annotated for 
both genes in a given gene pair. We evaluated the 
proposed method with a series of experiments on 
large groups of genes from two genomes SGD and 
Flybase. We have shown that this method correlates 
very well with gene sequence similarity by 
comparing large numbers of gene pairs with 
sequence similarities computed by one the most 
reliable algorithms for that purpose (Blast). We 
have shown further that randomly selected gene 
pairs have no significant (by-chance) pattern with 
path length. 
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